日本地球惑星科学連合2016年大会

講演情報

口頭発表

セッション記号 S (固体地球科学) » S-MP 岩石学・鉱物学

[S-MP44] メルト-延性-脆性岩体のダイナミクスとエネルギー・システム

2016年5月25日(水) 13:45 〜 15:15 301A (3F)

コンビーナ:*土屋 範芳(東北大学大学院環境科学研究科環境科学専攻)、浅沼 宏(産業技術総合研究所・再生可能エネルギー研究センター)、小川 康雄(東京工業大学火山流体研究センター)、長縄 成実(東京大学大学院工学系研究科)、座長:宇野 正起(東北大学大学院環境科学研究科)

15:00 〜 15:15

[SMP44-06] 人工ニューラルネットワークを使った比抵抗による地温の推定

*菅野 倖大朗1茂木 透2内田 利弘3梶原 竜哉4 (1.北海道大学大学院理学院、2.北海道大学大学院理学研究院、3.産業技術総合研究所、4.地熱エンジニアリング株式会社)

キーワード:人工ニューラルネットワーク、比抵抗、温度

Accurate estimation of the underground temperature is essential for the resource evaluation of a geothermal reservoir. However, the quantity of temperature data measured in boreholes is usually limited and therefore the estimation of temperature distribution at depth is often difficult. Here, we have tried to indirectly estimate the underground temperature by geophysical data that depend on temperature, by applying the artificial neural network (ANN) approach.
By using ANN trained by geological and geophysical data, this study aims to estimate underground temperature by resistivity data obtained from magnetotelluric (MT) sounding. MT investigation can estimate resistivity of deep underground easily and reasonably. If we can estimate temperature of deep underground from MT data, for example, we can find a promising geothermal reservoir and decide the location for development of a geothermal power plant.
We chose the Kakkonda geothermal area, Iwate Prefecture, Japan, as a test site of this study. It is because the area is underlain by a high-enthalpy geothermal system, reaching 500℃ at 3700m depth. In addition, many drillings and 2D or 3D resistivity surveys were carried out before.
We educated the ANN by position, depth and temperature data from well logs and resistivity data from MT sounding. After that, we tested various ANN structures to verify output temperature with observed well log temperature. As a result, we obtained good agreement at up to about 2.4 km depth where we have a lot of drilling data and fine resistivity data. However, fitness was not good at deeper part because drilling data were limited and the resistivity structure had low resolution at this depth.