Japan Geoscience Union Meeting 2016

Presentation information

Oral

Symbol S (Solid Earth Sciences) » S-RD Resources, Mineral Deposit & Resource Exploration

[S-RD41] Resource Geology

Wed. May 25, 2016 3:30 PM - 5:00 PM 201B (2F)

Convener:*Kenzo Sanematsu(Mineral Resource Research Group, Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology), Tsubasa Otake(Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University), Ryohei Takahashi(Faculty of International Resource Sciences, Akita University), Tatsuo Nozaki(Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology), Kotaro Yonezu(Deaprtment of Earth Resources Engineering, Faculty of Engineering, Kyushu University), Chair:Kenzo Sanematsu(Mineral Resource Research Group, Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology), Kotaro Yonezu(Deaprtment of Earth Resources Engineering, Faculty of Engineering, Kyushu University)

4:45 PM - 5:00 PM

[SRD41-05] Geochemical Study on Redox Conditions of REE Zone in Nickel Laterie Deposit, South Dinagat Island, Philippines

*Yoki Kitayama1, Kotaro Yonezu1, Jillian Gabo1,3, Rogel Santos2 (1.Kyushu University, 2.MacroAsia Corporation, 3.University of the Philippines)

Recently, the demand of REE is increasing but its production of REE is limited to a few countries. Therefore it is important to look for alternative sources of REE production. It is economically effective to produce REE as by-product of other resource deposits. Nickel laterite deposits, which account for over 60% of global nickel supply, are being investigated as a possible REE resource because weathering of nickel laterite produces significant concentration of REE, especially Sc. One of the factors that control the geochemical behavior of REE during weathering process is soil pH and redox condition. The objectives of this study are to describe the geochemical characteristics of REE during the formation of nickel laterite in South Dinagat Island and to propose a practical and convenient on-site geochemical tool for REE exploration in nickel laterite deposits.
The harzburgite is considered to be the bedrock in this area, and thin section observation revealed that it mainly consists of olivine, orthopyroxene, lizardite, saponite and garnierite. In this study, laterite samples are classified as limonite (FeO>60%), earthy saprolite (30%The XRF and ICP-MS analysis revealed that there is no apparent correlation between nickel, which is main product of nickel laterite deposits, and scandium, which is investigated as by-product. Nickel is concentrated in the fractures of lower limonite and saprolite as secondary formed hydrous Mg silicate. On the other hand, Sc exhibits correlation with immobile elements such as Fe and Al resulting in Sc concentration in the shallower zone. Weathering caused the Sc concentration to increase about 5.6 times, up to 75ppm, in the shallower zone compared with Sc content in bedrock because mobile elements percolate downward during weathering. Y and the lanthanides, except for Ce, showed different behavior from Sc. Y and Ln are concentrated in the negative Ce anomaly zone in the chondrite-normalized REE pattern. In oxidizing conditions, soluble Ce3+ is oxidized to Ce4+, which easily precipitates as very insoluble CeO2. However, the other REE is drained from the shallower zone and percolates downward. Consequently, positive Ce anomaly is observed in the shallower zone and negative Ce anomaly is observed in the deeper zone. Y and Ln are concentrated to increase up to 57ppm in negative Ce anomaly zone. Combined above geochemical data with on-site soil pH and Eh analyses, there is possibility to practically extract REE concentration zone. ΣREE (Sc, Y and Ln) is concentrated to increase about 3.2 times up to 126ppm in the horizon where pH values shows less than 7.0 compared with compared with ΣREE content in the horizon where pH values shows more than 7.0. Furthermore limonite and earthy saprolite, where Sc is concentrated, show pH values less than 6.5 and reveal Eh values more than 550mV.