日本地球惑星科学連合2018年大会

講演情報

[EE] 口頭発表

セッション記号 A (大気水圏科学) » A-AS 大気科学・気象学・大気環境

[A-AS01] 高性能スーパーコンピュータを用いた最新の大気科学

2018年5月20日(日) 15:30 〜 17:00 302 (幕張メッセ国際会議場 3F)

コンビーナ:瀬古 弘(気象研究所)、小玉 知央(独立行政法人海洋研究開発機構)、滝川 雅之(独立行政法人海洋研究開発機構、共同)、三好 建正(理化学研究所計算科学研究機構)、座長:三好 建正(理化学研究所計算科学研究機構)、小玉 知央 (国立研究開発法人 海洋研究開発機構)

15:30 〜 15:45

[AAS01-07] Assimilating Himawari-8 infrared radiances to improve convective predictability

*澤田 洋平1,2岡本 幸三1,2國井 勝3三好 建正2 (1.気象庁気象研究所、2.理化学研究所 計算科学研究機構、3.気象庁予報部)

キーワード:ひまわり8号、データ同化、局地的大雨

Improving the predictability of sudden local severe weather is a grand challenge for numerical weather prediction. Recently, the capability of geostationary satellites to observe infrared radiances has been significantly improved, and it is expected that the ‘Big Data’ from the new generation geostationary satellites contribute to improving convective predictability. In this study, we examined the potential impacts of assimilating frequent infrared observations from a new generation geostationary satellite, Himawari-8, on convective predictability. We implemented the real-data experiment in which Himawari-8 all-sky infrared radiances were assimilated into the high-resolution (2km) limited area model every 10 minutes. The frequent infrared observations from Himawari-8 improve the analysis and forecast of isolated convective cells and sudden local severe rainfall induced by weak large-scale forcing. The results imply that satellite data assimilation can contribute to forecasting severe weather events in smaller spatiotemporal scales than the previous studies.