日本地球惑星科学連合2018年大会

講演情報

[EE] 口頭発表

セッション記号 A (大気水圏科学) » A-HW 水文・陸水・地下水学・水環境

[A-HW22] 水循環・水環境

2018年5月23日(水) 15:30 〜 17:00 201A (幕張メッセ国際会議場 2F)

コンビーナ:長尾 誠也(金沢大学環日本海域環境研究センター)、町田 功(産業技術総合研究所地質調査総合センター)、飯田 真一(国立研究開発法人森林研究・整備機構森林総合研究所森林研究部門森林防災研究領域水保全研究室、共同)、林 武司(秋田大学教育文化学部)、座長:長尾 誠也(金沢大学環日本海域環境研究センター)、飯田 真一(国立研究開発法人森林総合研究所)、町田 功(産業技術総合研究所地質調査総合センター)

16:30 〜 16:45

[AHW22-05] Flood stage forecasting using a data-driven model

*Ya-Chi Chang1Cheng-Hsin Chen1Tsun-Hua Yang1 (1.Taiwan Typhoon and Flood Research Institute, NARL, Taiwan)

キーワード:flood forecasting system, neural network, water level prediction

In Taiwan, rivers administered by central government have rigorous flood protecting standard and completely flood forecasting system, nevertheless, rivers governed by local government do not. These rivers usually flow through the urban area and might have a huge impact on local residents’ life and property safety if flood occur. Therefore, the flood warning system is getting important for rivers administered by local government and it needs detailed geological and hydrological data for flood modeling, especially for river cross-section data which are usually unavailable for rivers administered by local government. In this study, the high-resolution digital terrain model is used to identify the basic geological/hydrological data of the upstream watershed of the river, such as catchment area, river slope, river width and length. Then the relationship between water level, flow, rainfall and the data above is developed using methods of neural network for establishing a flood forecasting system to predict the water level for rivers lacking of cross-section data. Results of this study may provide local governments a useful protocol to avoid the flood disasters.