日本地球惑星科学連合2018年大会

講演情報

[EE] 口頭発表

セッション記号 A (大気水圏科学) » A-OS 海洋科学・海洋環境

[A-OS08] 季節から十年規模の気候変動と予測可能性

2018年5月20日(日) 13:45 〜 15:15 301B (幕張メッセ国際会議場 3F)

コンビーナ:望月 崇(国立研究開発法人海洋研究開発機構)、V Ramaswamy(NOAA GFDL)、森岡 優志(海洋研究開発機構)、座長:望月 崇(海洋研究開発機構)、森岡 優志(海洋研究開発機構)

14:30 〜 14:45

[AOS08-04] Seasonal-to-decadal Prediction with the Norwegian Climate Prediction Model

*Noel S Keenlyside1,2Yiguo Wang2Francois Counillon2,1Ingo Bethke3Panxi Dai4Helene Langehaug2Madlen Kimmritz2Stephanie Gleixner1Lea Svendsen1 (1.Geophysical Institute, University of Bergen and Bjerknes Centre, Norway、2.Nansen Environmental and Remote Sensing Center, Norway、3.Uni Research, Norway、4.Peking University, China)

キーワード:Climate Prediction, Data assimilation, Tropical Pacific, Arctic Sea Ice, Atlantic Multi-decadal Variability

The Norwegian Climate prediction Model (NorCPM) is a fully coupled forecasting system that combines the Norwegian Earth system model with the Ensemble Kalman filter data assimilation method. We are testing the prediction skill of NorCPM with different ocean observation networks and for different time scales. At seasonal time scale, we find that NorCPM can achieve competitive skill in the ocean with assimilation of SST only e.g. in the ENSO region and in the region that extends from the Iceland Basin to the Barents Sea. As a downstream consequence, NorCPM shows skill in predicting Arctic sea ice extent (SIE) up to one year lead time from January and April at time when the influence of the ocean is consequent. Complementing the system with assimilation of ocean subsurface data have moderate impact on seasonal time scale, but it yields large improvements for longer time scale in the subpolar gyre and in the Nordic Seas. This relates to the improved representation of the salinity anomaly below the mixed layer, which causes a better initialisation of the density anomaly in the Labrador Sea.