日本地球惑星科学連合2018年大会

講演情報

[EE] 口頭発表

セッション記号 A (大気水圏科学) » A-OS 海洋科学・海洋環境

[A-OS09] Marine ecosystems and biogeochemical cycles: theory, observation and modeling

2018年5月23日(水) 10:45 〜 12:15 105 (幕張メッセ国際会議場 1F)

コンビーナ:伊藤 進一(東京大学大気海洋研究所)、平田 貴文(北海道大学地球環境科学研究院)、Eileen E Hofmann (共同)、Enrique N Curchitser (Rutgers University New Brunswick)、座長:平田 貴文(北海道大学)

12:00 〜 12:15

[AOS09-11] Turbulence controls size distribution of aggregates: in-situ observations by a microstructure profiler and a cabled observatory

*竹内 茉莉香1,2マーク デュベル3ジョージ ジャクソン4ジム ミッチェル2山崎 秀勝1 (1.東京海洋大学、2.フリンダース大学、3.サウスオーストラリア研究開発機関、4.テキサスA&M大学)

キーワード:乱流、凝集体、カーボンフラックス

Marine aggregates are ubiquitous particles formed from the accretion of smaller biogenic and non-biogenic components. Visible aggregates, known as marine snow, are typically in the 0.5 to few mm size range. Aggregates are well recognised as hotspot of microbial and planktonic activities. Aggregates formation is an important pathway for transferring materials and carbon flux from surface to the deep ocean. Because aggregate sinking velocity and carbon mass content is size dependent, understanding the physical mechanism controlling aggregate size distribution is fundamental to determining the biological carbon pump efficiency.
Turbulence is a physical mechanism in the aggregates formation and destruction. However, the relative roles of turbulence in aggregates formation and destruction have not been fully tested in observational studies. In this study, we analysed simultaneous in-situ observations of turbulence and aggregate in the various aquatic systems. A microstructure profiler (TurboMAP-L) and a cabled observatory(OCEANS) were used to collect shear data and a digital still logger camera was used to collect images of aggregates. Digital images were subsequently used to determine aggregates abundances and size distributions. Direct comparison of turbulence intensity and aggregate size distributions show that turbulence below TKE dissipation rate=10-6[W/kg] enhances aggregation, increasing average particle size; greater turbulence causes particle breakup, limiting the average maximum aggregate size and decreasing the slopes of size distributions. This indicates the role of turbulence controlling aggregate size distributions. We also present fluorescence data collected by TurboMAP-L and focus on difference of aggregates size distributions among different aquatic systems.