Japan Geoscience Union Meeting 2018

Presentation information

[EE] Oral

A (Atmospheric and Hydrospheric Sciences) » A-OS Ocean Sciences & Ocean Environment

[A-OS11] What we have learned about ocean mixing in the last decade

Mon. May 21, 2018 9:00 AM - 10:30 AM 105 (1F International Conference Hall, Makuhari Messe)

convener:Toshiyuki Hibiya(Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo), Louis St Laurent (Woods Hole Oceanographic Institution), Ren-Chieh Lien(None, 共同), Robin Ann Robertson (China-ASEAN College of Marine Science Xiamen University Malaysia), Chairperson:Robertson Robin(China-ASEAN College of Marine Sciences, Xiamen University Malaysia)

9:45 AM - 10:00 AM

[AOS11-04] Weak Thermocline Mixing in the North Pacific Low-Latitude Western Boundary Current System

*Zhiyu Liu1 (1.Xiamen University)

Keywords:diapycnal mixing, North Pacific, low-latitude western boundary current system, eddy, thermocline

Despite its potential importance in the global climate system, mixing properties of the North Pacific low-latitude western boundary current system (LLWBC) remained unsampled until very recently. We report here on the first measurements of turbulence microstructure associated with these currents, made in the western boundary region of the tropical North Pacific east of the Philippines. The results suggest that thermocline mixing in the North Pacific LLWBC is generally weak with the diapycnal diffusivity κρO(10−6) m2 s−1. This is consistent with predictions from internal wave-wave interaction theory that mixing due to internal wave breaking is significantly reduced at low latitudes. Enhanced mixing is found to be associated with a permanent cyclonic eddy, the Mindanao Eddy, but mainly at its south and north flanks. There, κρ is elevated by an order of magnitude due to eddy-induced geostrophic shear. Mixing in the eddy core is at the background level with no indication of enhancement.