日本地球惑星科学連合2018年大会

講演情報

[EE] Eveningポスター発表

セッション記号 B (地球生命科学) » B-AO 宇宙生物学・生命起源

[B-AO01] アストロバイオロジー

2018年5月22日(火) 17:15 〜 18:30 ポスター会場 (幕張メッセ国際展示場 7ホール)

コンビーナ:薮田 ひかる(広島大学大学院理学研究科地球惑星システム学専攻)、杉田 精司(東京大学大学院理学系研究科地球惑星科学専攻)、深川 美里(名古屋大学、共同)、藤島 皓介(東京工業大学地球生命研究所)

[BAO01-P12] Analysis of DNA damage induced by space exposure of Deinococcus radiodurans R1 in Tanpopo mission

*矢田部 純1河口 優子1木下 伊織1藤原 大佑1青木 元秀1谷口 紀恵1鳴海 一成2澁谷 美緒1橋本 博文3横堀 伸一1山岸 明彦1 (1.東京薬科大学、2.東洋大学、3.宇宙航空研究開発機構 宇宙開発研究所)

キーワード:パンスペルミア仮説、宇宙曝露実験、細胞凝集体、DNA損傷、定量PCR

Tanpopo mission is a Japanese astrobiology experiment addressing basic questions on the origin of terrestrial life and panspermia hypothesis (Yamagishi et al., 2009; Kawaguchi et al., 2016). We have started the space experiments at the Exposure Facility of the Japan Experiment Module on the International Space Station (ISS). Capture experiment investigates existence of terrestrial microbes in space. Exposure experiment investigates the microbial survival and DNA damage caused in space. We analyze degree and types of DNA damage in Deinococcus radiodurans using following methods: 1) comparison of survival fractions of mutant strains deficient in each of DNA repair systems, 2) analysis of DNA double-strand breaks using pulsed-field gel electrophoresis, 3) estimation of DNA damage using quantitative-PCR (q-PCR), 4) detection of mutation in rpoB gene and 5) analysis of DNA base damage using LC-MS/MS. In this work, we quantified DNA damage (double-strand breaks, single-strand breaks, hydrolysis of base, modified base, and so on) in part of the rpoB gene using q-PCR.
Methods
Dried deinococcus cell-aggregates with different thickness were exposed to space (space samples) for about one year. The cells were also stored in the ground laboratory (ground references) and in ISS cabin (ISS references). After exposure or storage, genomic DNA was extracted from each sample and an 887-bp region in the rpoB gene was amplified by q-PCR. Intact DNA (%) was determined from the quotient N/N0, where N = copy number of rpoB gene amplified from DNA of exposed or stored cells and N0 = copy number of rpoB gene amplified from freshly prepared DNA.
Results and Discussion
Cell-aggregates with 100 µm-thickness exposed to space all cells were dead. Intact DNA of the cell-aggregates with 100 µm-thickness exposed to space was less than 1%. On the other hand, Survival fraction in those with 500, 1000 μm-thickness was similar between the ground references and the space samples. The result indicates that UV affected only the surface of the cell-aggregates. Intact DNA showed a good correlation with surviving fraction. We will also report the types and degrees of DNA damage using other methods.
Yamagishi, A., et al., (2007) Biol. Sci. Space 21: 67−75. , Kawaguchi, Y., et al., (2016) Astrobiology 16: 363−376.