日本地球惑星科学連合2018年大会

講演情報

[EE] Eveningポスター発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT27] 地球内部での液体の特性とその役割

2018年5月22日(火) 17:15 〜 18:30 ポスター会場 (幕張メッセ国際展示場 7ホール)

コンビーナ:坂巻 竜也(東北大学大学院理学研究科)、中島 陽一(熊本大学大学院先導機構)

[SIT27-P01] Sound velocity measurements on liquid Fe-P alloy under high pressure

*木下 大輔1中島 陽一1,4小杉 尚太郎1桑山 靖弘2廣瀬 敬2石川 大介3Baron Alfred4 (1.熊本大学、2.東京大学、3.高輝度光科学研究センター、4.理研放射光科学研究センター)

キーワード:地球外核、音速、高圧

The Earth’s outer core occupying 95 vol.% of the entire core is molten. The outer core is composed mainly of iron, and containing some lighter elements. The nature of the light element is a key to understand the core formation, its chemical and thermal evolutions, and the present dynamics. The core composition can be constrained by comparing the seismological observations and the sound wave velocity of possible Fe alloys under relevant high-pressure and -temperature conditions in the core. Phosphorous is one of the candidates for the light elements in the core because it is found in iron-meteorites and depleted in the silicate mantle relative to chondrites [e.g. 1]. In this study, we determined the P-wave velocity of liquid Fe75P25 up to 60 GPa and 2700 K, using laser-heated diamond-anvil cells combining with high-resolution inelastic X-ray scattering (IXS) spectroscopy. IXS measurements were performed at a beamline BL43LXU [2] of the RIKEN SPring-8 Center in Japan. We observed the longitudinal acoustic phonon mode of liquid Fe75P25 in a momentum transfer range of 3-5.7 nm-1 at each pressure-temperature condition. The P-wave velocity was determined from the dispersion relation. Comparing the present results of Fe75P25 and that of pure Fe [3], we found that phosphorous has negligible influence on the sound velocity of liquid Fe. On the other hand, the elastic parameters based on the present study indicate that phosphorous decreases both density and bulk modulus of liquid Fe under the present experimental conditions.

References
[1] McDonough (2003) Treatise on Geochem. vol. 2, 547-568.
[2] Baron (2010) SPring-8 Inf. Newsl. 15, 14-19.
[3] Anderson and Ahrens (1994) J. Geophys. Res. 99, 4273-4284.