日本地球惑星科学連合2018年大会

講演情報

[EJ] 口頭発表

セッション記号 M (領域外・複数領域) » M-AG 応用地球科学

[M-AG32] 海洋地球インフォマティクス

2018年5月23日(水) 13:45 〜 15:15 301B (幕張メッセ国際会議場 3F)

コンビーナ:坪井 誠司(海洋研究開発機構)、高橋 桂子(国立研究開発法人海洋研究開発機構)、金尾 政紀(国立極地研究所)、座長:坪井 誠司松岡 大祐

14:35 〜 14:50

[MAG32-04] Scientific Visualization of Climate Simulation Data for Deep Convolutional Neural Network

*松岡 大祐1,2 (1.国立研究開発法人海洋研究開発機構、2.国立研究開発法人科学技術振興機構)

キーワード:可視化、ディープラーニング、画像認識

Deep learning using convolutional neural network (CNN) is effective to image pattern recognition and classification in various fields. In order to obtain high recognition accuracy using deep learning, domain specific techniques are needed. However, in the climate science field, such know-how is not sufficiently accumulated. In the present study, we investigated about input data format of climate simulation data (especially cloud and wind velocity) which can be recognized with high accuracy as fundamental research for applying deep learning to climate science. We prepare original data (single precision real number), normal image data, shading image for cloud, vector field visualization image for wind velocity, and multivariate visualization image for cloud and wind velocity (image data is 256 step gray scale). As a result of sensitivity experiments with multiple CNN architecture, it is found that the highest accuracy can be obtained with multi-channel real number for binary classification task (positive: Tropical Cyclone, negative: not Tropical Cyclone). On the other hand, multivariate visualization image (one channel and 256 step integer number) also obtains the accuracy applicable a practical use at minimum CNN architecture with minimum epoch number (the number of iterative learning).