日本地球惑星科学連合2018年大会

講演情報

[EE] 口頭発表

セッション記号 M (領域外・複数領域) » M-GI 地球科学一般・情報地球科学

[M-GI22] Data assimilation: A fundamental approach in geosciences

2018年5月20日(日) 09:00 〜 10:30 302 (幕張メッセ国際会議場 3F)

コンビーナ:中野 慎也(情報・システム研究機構 統計数理研究所)、藤井 陽介(気象庁気象研究所)、宮崎 真一(京都大学理学研究科、共同)、三好 建正(理化学研究所計算科学研究機構)、座長:藤井 陽介

09:15 〜 09:30

[MGI22-02] Grad-CAM will tell the important regions to predict the typhoon intensity

*棚原 慎也1伊藤 耕介1,2山田 広幸1柴田 大河1宮田 龍太1 (1.琉球大学、2.気象研究所)

キーワード:台風強度予測、人工知能、畳み込みニューラルネットワーク、Grad-CAM、感度解析

Because typhoons are often highly destructive, their accurate prediction has been of particular importance in the field of weather forecasting. Although there has been relatively steady improvement over the years in track forecasting with ever improving numerical models, the accuracy of intensity forecasts still lags that of the track forecasts. We here adopt an artificial intelligence approach essentially different from the conventional one based on the global spectral model. we predict the 24-hour typhoon intensities from the past satellite images using the convolutional neural network (CNN), which has been established as a powerful classification model for image recognition problems. Moreover, we conduct a sensitivity analysis of the prediction model using a gradient-weighted class activation mapping (Grad-CAM) technique, which produces a localization map highlighting the important regions in the image for predicting 24 hours after typhoon intensity. The results suggest that the shape of clouds surrounding the core of typhoon such as rainbands is more crucial than that of the typhoon itself to predict the intensity.