日本地球惑星科学連合2018年大会

講演情報

[JJ] 口頭発表

セッション記号 M (領域外・複数領域) » M-IS ジョイント

[M-IS10] 古気候・古海洋変動

2018年5月24日(木) 15:30 〜 17:00 A07 (東京ベイ幕張ホール)

コンビーナ:岡崎 裕典(九州大学大学院理学研究院地球惑星科学部門)、磯辺 篤彦(九州大学応用力学研究所)、北村 晃寿(静岡大学理学部地球科学教室、共同)、佐野 雅規(早稲田大学人間科学学術院)、長谷川 精(高知大学理工学部)、岡 顕(東京大学大気海洋研究所)、加 三千宣(愛媛大学沿岸環境科学研究センター)、座長:加 三千宣(愛媛大学沿岸環境科学研究センター)

15:45 〜 16:00

[MIS10-30] Application of ramped pyrolysis 14C method to postglacial sediment in the Chukchi-Alaskan margin, western Arctic Ocean.

*鈴木 健太1山本 正伸1,2Rosenheim Brad3大森 貴之4Polyak Leonid5南 承一6 (1.北海道大学大学院環境科学院、2.北海道大学大学院地球科学研究院、3.南フロリダ大学海洋科学大学、4.東京大学総合研究博物館、5.オハイオ州立大学バード極地研究所、6.韓国極地研究所)

The Arctic Ocean underwent dramatic climate changes in the past. Changes in sea-ice extent and ocean currents in the Arctic Ocean cause changes in surface albedo and deep water formation, which drove global climatic changes. However, Arctic paleoceanographic studies have been limited compared to the other oceans due to chronostratigraphic difficulties. One of the reasons for this is absence of material suitable for 14C dating in the Arctic Ocean sediments deposited since the last glacial maximum. To enable improved age constraints for sediments impoverished in datable material, we apply ramped pyrolysis 14C method (Rosenheim et al., 2008) to sedimentary records from the Chukchi-Alaska margin recovering Holocene to late-glacial deposits. Samples were divided into five fraction products by gradual heating sedimentary organic carbon from ambient room temperature to 900°C. The thermographs show a trimodal pattern of organic matter decomposition over temperature, and we consider that CO2 generated at the lowest temperature range was derived from autochthonous organic carbon contemporaneous with sediment deposition, similar to studies in the Antarctic margin and elsewhere. For verification of results, some of the samples treated for ramped pyrolysis 14C were taken from intervals dated earlier by AMS 14C using bivalve shells. The ages of lowest temperature split showed older ages than the radiocarbon ages derived from bivalve shells indicating that those splits were still mixtures and not pure autochthonous organic matter. The relationship between radiocarbon ages of generated gas and pyrolysis temperature is linear. We used this empirical relationship to determine the optimal temperature yielding pure marine organic carbon and estimated age of horizons by sampling at those temperatures. We compare these ages to mixing model ages decoupling the simpler mixtures represented by our original low-temperature splits, which were consistent with the bivalve ages.