日本地球惑星科学連合2018年大会

講演情報

[JJ] 口頭発表

セッション記号 M (領域外・複数領域) » M-IS ジョイント

[M-IS19] 大気電気学

2018年5月22日(火) 13:45 〜 15:15 201A (幕張メッセ国際会議場 2F)

コンビーナ:芳原 容英(電気通信大学 大学院情報理工学研究科)、鴨川 仁(東京学芸大学教育学部物理学科)、座長:森本 健志鴨川 仁(東京学芸大学 教育学部 自然科学系基礎自然科学講座 物理科学分野)

14:45 〜 15:00

[MIS19-05] Developping New Nowcasting Method by Using Convolution Neural Network

*末澤 卓1妻鹿 友昭1菊池 博史1吉田 翔2水谷 文彦3吉見 和紘3牛尾 知雄1 (1.首都大学東京、2.気象工学研究所、3.東芝インフラシステムズ株式会社)

キーワード:短時間降水予測、畳み込みニューラルネットワーク

More precise short-time quantitative precipitation forecasting is required, because convective rain causes urban flash flooding. We developed new forecasting method by using Convolution Neural Network (CNN-Nowcast). Our method can forecast growth or decay of rain cells without any a priori knowledges.

We applied the CNN-Nowcast method to observation data of the Phased Array Weather Radar (PAWR) in Suita city, Osaka prefecture. The PAWR can observe 3-dimentional structure of clouds every 30 seconds. Our CNN is composed of 3 Convolution Layers, 2 Max Pooling Layers and 3 Full Connected Layers. Input data of the CNN is the PAWR observation data, its time duration is 5 minutes and interval are 1 minute. The CNN outputs 2.5 km mesh rain fall rate forecast (5 minutes after). We trained the CNN using 17252 of training data (86 days), then we evaluated accuracy of the CNN-Nowcast. Comparing with a previous method, we employed the 3D-Nowcast that forecast using PAWR 3-dimentional observation data. As a result, the CNN-Nowcast could forecast in coming rain cells which wasn’t observed in input observation data and achieved higher threat score than the previous method with 5~14 mm/hr rain intensity threshold. But, the CNN-Nowcast underestimate for 25~ mm/hr rain area. It is because we didn’t have enough high rain intensity (25~ mm/hr) data (0.07% of total training data). We will train the CNN with a lot of high rain intensity training data to improve accuracy. We used 2-dimentional observation data for this experiment. But, the CNN can work with various input data. We will use 3-dimentional observation data of the PAWR in order to estimate vertical advection speed and improve high intensity rain forecasting.