10:00 〜 10:15
[PEM15-29] Characteristics of slow-mode shocks in the dayside magnetopause observed by MMS
The existence of slow-mode shocks in the magnetic reconnection region has been proposed since 1964 [e.g., Petschek, 1964; Levy et al., 1964]. While, there have been many reports on the observation of slow-mode shocks in the magnetotail region [e.g., Feldman et al., 1987; Saito et al., 1995; Eriksson et al., 2004], there are only two event studies which have reported the presence of slow-mode shocks in the magnetopause reconnection [Walthour et al., 1994; Sonnerup et al., 2016]. Many MHD simulations of magnetopause reconnection [e.g., Hoshino and Nishida, 1983; Heyn et al., 1985; Biernat et al., 1989, Hau and Wang, 2016] have reported the presence of slow-mode shocks and their dependence on the local magnetosphere and magnetosheath parameters. The inherent turbulent nature of the magnetopause boundary and low time resolution of earlier spacecrafts before Magnetospheric Multiscale (MMS), can be the reason why there are only a few reports of slow-mode shocks in the magnetopause.
We investigated characteristics of slow-mode shocks in the dayside magnetopause based on MMS observations from September 2015 to February 2017. We analyzed 99 magnetopause crossings with reconnection jets and burst-mode (high time resolution) data, out of which 21 slow-mode shock signatures were found. 7 slow-mode shocks were observed on the magnetosphere side while 14 on the magnetosheath side. The detection probability of slow-mode shocks in the magnetopause (~20%) is greater than that reported in the magnetotail. We also found 12 rotational discontinuities in these slow-mode shock events. 9 of these rotational discontinuities were observed towards the magnetosheath side. The results also show that the observation of magnetosphere slow-mode shock is favored when the number densities of magnetosphere and magnetosheath are comparable. No clear dependence of existence of slow-mode shocks on other parameters such as, plasma beta, temperature anisotropy, jet velocity was found.
References
Biernat, H. K., et. al. (1989) J. Geophys. Res., 94(A1), 287–298. doi:10.1029/JA094iA01p00287
Eriksson, S., et al. (2004) J. Geophys. Res., 109, A10212. doi:10.1029/2004JA010534.
Feldman, W. C., et al. (1984) Geophys. Res. Lett., 11: 599–602. doi:10.1029/GL011i006p00599
Hau, L.-N., & Wang, B.-J. (2016) J. Geophys. Res., Space Physics, 121, 6245–6261. doi:10.1002/2016JA022722
Heyn, M. F., et. al. (1985) J. Geophys. Res., 90(A2), 1781–1785. doi:10.1029/JA090iA02p01781
Hoshino, M., & Nishida, A. (1983) J. Geophys. Res., , 88(A9), 6926–6936. doi:10.1029/JA088iA09p06926
Levy, R. H., et. al. (1964) AIAA Journal, Vol. 2, No. 12, pp. 2065-2076. doi:10.2514/3.2745
Petschek, H. E. (1964) NASA Special Publication 50, 425
Saito, Y., et al. (1995) J. Geophys. Res., , 100(A12), 23567–23581. doi:10.1029/95JA01675
Sonnerup, B., et al. (2016) J. Geophys. Res., 121, 3310–3332. doi:10.1002/2016JA022362
Walthour, D. W., et. al. (1994) J. Geophys. Res., 99(A12), 23705–23722. doi:10.1029/94JA01767
We investigated characteristics of slow-mode shocks in the dayside magnetopause based on MMS observations from September 2015 to February 2017. We analyzed 99 magnetopause crossings with reconnection jets and burst-mode (high time resolution) data, out of which 21 slow-mode shock signatures were found. 7 slow-mode shocks were observed on the magnetosphere side while 14 on the magnetosheath side. The detection probability of slow-mode shocks in the magnetopause (~20%) is greater than that reported in the magnetotail. We also found 12 rotational discontinuities in these slow-mode shock events. 9 of these rotational discontinuities were observed towards the magnetosheath side. The results also show that the observation of magnetosphere slow-mode shock is favored when the number densities of magnetosphere and magnetosheath are comparable. No clear dependence of existence of slow-mode shocks on other parameters such as, plasma beta, temperature anisotropy, jet velocity was found.
References
Biernat, H. K., et. al. (1989) J. Geophys. Res., 94(A1), 287–298. doi:10.1029/JA094iA01p00287
Eriksson, S., et al. (2004) J. Geophys. Res., 109, A10212. doi:10.1029/2004JA010534.
Feldman, W. C., et al. (1984) Geophys. Res. Lett., 11: 599–602. doi:10.1029/GL011i006p00599
Hau, L.-N., & Wang, B.-J. (2016) J. Geophys. Res., Space Physics, 121, 6245–6261. doi:10.1002/2016JA022722
Heyn, M. F., et. al. (1985) J. Geophys. Res., 90(A2), 1781–1785. doi:10.1029/JA090iA02p01781
Hoshino, M., & Nishida, A. (1983) J. Geophys. Res., , 88(A9), 6926–6936. doi:10.1029/JA088iA09p06926
Levy, R. H., et. al. (1964) AIAA Journal, Vol. 2, No. 12, pp. 2065-2076. doi:10.2514/3.2745
Petschek, H. E. (1964) NASA Special Publication 50, 425
Saito, Y., et al. (1995) J. Geophys. Res., , 100(A12), 23567–23581. doi:10.1029/95JA01675
Sonnerup, B., et al. (2016) J. Geophys. Res., 121, 3310–3332. doi:10.1002/2016JA022362
Walthour, D. W., et. al. (1994) J. Geophys. Res., 99(A12), 23705–23722. doi:10.1029/94JA01767