日本地球惑星科学連合2018年大会

講演情報

[EE] 口頭発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM16] Dynamics of Earth's Inner Magnetosphere and Initial Results from Arase

2018年5月22日(火) 13:45 〜 15:15 303 (幕張メッセ国際会議場 3F)

コンビーナ:Danny Summers(Memorial University of Newfoundland)、三好 由純(名古屋大学宇宙地球環境研究所)、細川 敬祐(電気通信大学大学院情報理工学研究科、共同)、海老原 祐輔(京都大学生存圏研究所)、座長:海老原 祐輔(京都大学生存圏研究所)

13:45 〜 14:00

[PEM16-31] Spatial distribution of the contributions from electrons, protons, and oxygen ions to energy density in the inner magnetosphere

★Invited Papers

*桂華 邦裕1笠原 慧1横田 勝一郎2星野 真弘1関 華奈子1能勢 正仁3三好 由純4天野 孝伸1篠原 育5 (1.東京大学大学院理学系研究科、2.大阪大学大学院理学研究科、3.京都大学大学院理学研究科附属地磁気世界資料解析センター、4.名古屋大学宇宙地球環境研究所、5.宇宙航空研究開発機構宇宙科学研究所)

キーワード:内部磁気圏、リングカレント、磁気嵐、地球起源酸素イオン、磁気圏プラズマ加速、加熱、輸送

The ring current is controlled by the plasma pressure and its spatial gradient. It has been reported that the pressure is dominated by plasma with energies of a few to a few 100s keV. Oxygen ions of ionospheric origin can be energized in the plasma sheet and/or the inner magnetosphere up to a few tens to a few hundreds of keV. The ionospheric oxygen ions make a significant contribution to the ion pressure during geomagnetically active periods. This paper examines spatial variations of the contribution from electrons, protons, and oxygen ions to energy density during the main and early recovery phases of magnetic storms. We primarily use electron, proton, and oxygen ion data from the MEP-e and MEP-i instruments on board the Arase (ERG) spacecraft. MEP-e measures energetic electrons with energies of 7-87 keV. MEP-i measures energetic ions with energies of 9-180 keV/q; ion mass-per-charge is derived from energy and velocity measurements by an electrostatic analyzer and the time-of-flight system, respectively. We select all magnetic storms with the Dst index minimum smaller than -50 nT during the first year of the Arase mission. For example, during the 27 March 2017 storm, the O-to-H ratio increased by about an order of magnitude, from ~0.02 to 0.2-0.3. The high-flux >10 keV/q ions consisted of clearly different two populations: one dominated by 5-20 keV/q ions, likely originating from pre-existing cold plasma sheet population; and the other with structured dispersion signatures at 30-90 keV/q, likely due to the penetration of ions accelerated in the near-Earth plasma sheet. We found that both populations contributed to the total pressure almost equally. We also study energy-spectral evolution of the contribution to the energy density to discuss about possible mass-dependent/selective acceleration in the near-Earth plasma sheet.