日本地球惑星科学連合2018年大会

講演情報

[EE] ポスター発表

セッション記号 P (宇宙惑星科学) » P-PS 惑星科学

[P-PS02] Regolith Science

2018年5月22日(火) 15:30 〜 17:00 ポスター会場 (幕張メッセ国際展示場 7ホール)

コンビーナ:和田 浩二(千葉工業大学惑星探査研究センター)、中村 昭子(神戸大学大学院理学研究科地球惑星科学専攻)、Patrick Michel(共同)、Kevin John Walsh (Southwest Research Institute Boulder)

[PPS02-P08] Searching SCI craters: Results of a Hayabusa2 landing site selection dry-run

*嶌生 有理1和田 浩二2白井 慶1荒川 政彦3門野 敏彦4石橋 高2木村 宏2高木 靖彦5平田 成6早川 雅彦1諸田 智克7巽 瑛理8金丸 仁明9坂谷 尚哉10亀田 真吾11杉田 精司8道上 達広12田中 智1三浦 昭1山口 智宏1山田 学2本田 理恵13横田 康弘1中村 智樹14澤田 弘崇1小川 和律3佐伯 孝尚1山本 幸生1千秋 博紀2野口 高明15渡邊 誠一郎7 (1.宇宙航空研究開発機構宇宙科学研究所、2.千葉工業大学惑星探査研究センター、3.神戸大学、4.産業医科大学、5.愛知東邦大学、6.会津大学、7.名古屋大学、8.東京大学、9.大阪大学、10.明治大学、11.立教大学、12.近畿大学、13.高知大学、14.東北大学、15.九州大学)

キーワード:はやぶさ2、小型搭載型衝突装置 (SCI)、衝突クレータ

The Hayabusa2 mission plans to create an artificial crater by Small Carry-on Impactor (SCI) onboard the Hayabusa2 spacecraft (SC) to access the interior of the C-type asteroid Ryugu. Deployable CAMera system 3 (DCAM3) onboard the SC will be separated from the SC during the SCI operation and observe in-situ crater formation. Optical Navigation Camera (ONC) onboard the SC will take scanning images of the cratered area from 1.5 km altitude 2-weeks before and after the SCI operation, which enable us to find the SCI crater. Landing Site Selection for the third touch down nearby the SCI crater (LSS-SCI) will be performed within 3 days after the post SCI-crater searching operation. We carried out the LSS-SCI dry-run test by using the asteroid Ryugu analog shape model “Ryugoid”. ONC images were synthesized from the shape model by simulating observation conditions planned for the pre- and post-SCI-crater searching operation. In the shape model for the post SCI-crater searching operation, a total of 18 or 19 SCI-craters and 2 or 3 MASCOTs (Mobile Asteroid surface SCOuT, a lander developed by DLR and CNES) were created on the Ryugoid surface to simulate various conditions of SCI impacts and MASCOT landings. By comparing pre- and post-impact images, it was confirmed in the first review meeting that our searching team discovered 13 craters and 2 MASCOTs. We found it difficult to identify craters less than 10 pixels in the low altitude images. We noticed the necessity of quickly recognizing artifact noises derived from image processing such as radiometric, distortion, and photometric corrections including flat-field calibration. In the dry-run test, procedures on data processing, data supply for the searching team, and band selection were also established. The presence of undiscovered craters suggests that some craters are formed in the shadow of large boulders or out of the observation area, or hard to be identified due to lack of pre-impact images. We will introduce progress and struggle of the searching team.