日本地球惑星科学連合2018年大会

講演情報

[JJ] 口頭発表

セッション記号 P (宇宙惑星科学) » P-PS 惑星科学

[P-PS08] 惑星科学

2018年5月21日(月) 13:45 〜 15:15 国際会議室(IC) (幕張メッセ国際会議場 2F)

コンビーナ:岡本 尚也(国立研究開発法人宇宙航空開発機構 宇宙科学研究所)、黒崎 健二(名古屋大学大学院 理学研究科 素粒子宇宙物理学専攻)、座長:城野 信一(名古屋大学 大学院環境学研究科)、小林 浩(名古屋大学大学院 理学研究科)

13:45 〜 14:00

[PPS08-19] 揮発性物質をともなった溶融微惑星衝突によるコンドリュールの形成

*城野 信一1 (1.名古屋大学 大学院環境学研究科 地球環境科学専攻)

キーワード:コンドリュール、微惑星、衝突、揮発性物質

Chondrule formation is one of the most important issues to be solved in planetary science. Although many models have been proposed, a consensus has not been reached. Heating by 26Al causes internal melting of rocky planetesimal. When such plantesimals collide, silicate melt can splash out from inside and may lead to formation of chondrules (e.g. Asphaug et al.2011, Sanders and Scott 2012). However, the size of a droplet should be much larger than the chondrule size in this model. Here I propose a new model based on collisions between a melting rocky planetesimal associated with volatile materials. I determined a range of water content which is suitable for chondrule formation. Collision simulation is conducted to determine the efficiency of chondrule formation using iSALE hydrocode. The left panel of the figure is the snapshot of a collision between a 10km radius dunite planetesimal and a 40km radius melting planetesimal with 2km thick outer solid shell. I determined the volume above melting temperature as a function of pressure. As pressure decreases, the volatile material contained inside the volume expand quickly and will produce small sized droplets. Therefore, the important quantity is the volume of melting silicate as a function of pressure. The right panel of the figure shows the melting volume coming from target (red) and projectile (blue). The volume with a pressure less than 100MPa is shown. If the volatile (H2O) content is one percent, water vapor starts to expand at this pressure. It can be seen that a significant amount of chondrules would be produced if the collision velocity is larger than 3km/s. Two major types of chondrites (carbonaceous, ordinary) might be explained by these two types of melting regions during a collision.