日本地球惑星科学連合2018年大会

講演情報

[EJ] 口頭発表

セッション記号 S (固体地球科学) » S-GD 測地学

[S-GD01] 重力・ジオイド

2018年5月23日(水) 10:45 〜 12:15 A09 (東京ベイ幕張ホール)

コンビーナ:Takayuki Miyazaki(Geospatial Information Authority of Japan)、山本 圭香(国立天文台)、座長:名和 一成西島 潤

11:00 〜 11:15

[SGD01-08] 2016年カイコウラ地震による重力変化

*福田 洋一1瀧口 博士2西島 潤3風間 卓仁1Stagpoole Vaughan4O'Brien Grant4 (1.京都大学大学院理学研究科地球惑星科学専攻地球物理学教室、2.宇宙航空研究開発機構、3.九州大学大学院工学研究院地球資源システム工学部門、4.GNS Science)

キーワード:カイコウラ地震、重力変化、地殻変動、相対重力測定、絶対重力測定

The 2016 Kaikoura earthquake occurred at 11:02 on Nov. 13, 2016 UTC (00:02 on Nov. 14, 2016 NZDT) in the South Island of New Zealand. Its epicentre was located about 60 km south-west of Kaikoura at a depth of 15 km. The magnitude 7.8 (Mw) earthquake lasted about 2 minutes. One of the characteristics of the earthquake was its complicated ruptures towards north-east and large crustal movements along major faults. In-SAR analysis, GNSS measurements, as well as in-situ observations revealed that more than 8 meters uplift was occured as a block motion along the fault boundaries. Also 1-2 meters uplift was widely observed along the north-east coastal area.

Since the gravity changes due to the vertical crustal movements provide the information about the subsuface density changes, which would be usefull for considering the rupture mechanism, we have conducted relative gravity measurements at bench marks along State Highway 1 (SH1) from Blenheim to Christchurch. The obtained gravity values were compered with those of the 1980's precise gravity network. Although the uncertainties of the comparisons were not small, the results clearly show the gravity changes due to the widespread uplift. In particular, the gravity changes around Ward are significant and a step of the gravity change of about 0.5 mGal is clearly detected across the Kekerengu Fault.

In addition to the relative gravity measurements, we conducted absolute gravity measurments at 2 sites in Marlborough region in Sep. 2017, and we plan to reoccupy the same points in April-May 2018 to detect the possible gravity changes due to postseismic deformation. We also plan to conduct GNSS survey at the gravity bench marks to evaluate height changes more precisely. These data will be used to estimate the ratio between the gravity changes vs height changes, which should provide useful information about the mechanism of the crustal movements.

This study was partially supported by JSPS KAKENHI Grant No. 15H05205.