日本地球惑星科学連合2018年大会

講演情報

[EE] 口頭発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT20] Structure and Dynamics of Earth and Planetary Mantles

2018年5月21日(月) 10:45 〜 12:15 A05 (東京ベイ幕張ホール)

コンビーナ:芳野 極(岡山大学惑星物質研究所)、趙 大鵬(東北大学大学院理学研究科附属地震・噴火予知研究観測センター)、中川 貴司(海洋研究開発機構数理科学・先端技術研究分野)、座長:中川 貴司(海洋研究開発機構)、芳野 極(岡山大学)

11:30 〜 11:45

[SIT20-10] Low-pressure analogs of MgSiO3 post-perovskite at ultrahigh pressures by first principles

*梅本 幸一郎1Wentzcovitch Renata2 (1.東京工業大学 地球生命研究所、2.コロンビア大)

キーワード:ポストポストペロブスカイト転移、第一原理計算、地球型系外惑星深部

MgSiO3 post-perovskite (Mg-PPV) is the final form of this silicate in the Earth’s mantle. However, the fate of Mg-PPV in the mantle of terrestrial exoplanets, where pressures and temperatures are much higher than those on Earth, is still an open question. Knowledge of such transitions will be fundamental for numerical simulations of mantles in terrestrial exoplanets. Previously, by first principles, we predicted a complex series of phase transitions involving dissociation (MgSiO3 -> Mg2SiO4 + MgSi2O5 -> Mg2SiO4 + SiO2 -> MgO + SiO2) and recombination (MgO + MgSiO3 -> Mg2SiO4 or SiO2 + MgSiO3 -> MgSi2O5) reactions among silicates and elementary oxides. These transitions also depend on the chemical compositions of planetary mantles [1,2] and occur at very high pressure (above ~0.5 TPa), which makes experimental validation rather difficult. Here, we search for these low-pressure analogs using first principles calculations. We hope the present study will facilitate experimental validation and encourage researchers of numerical simulations of mantles in terrestrial exoplanets to take dissociations and recombinations of Mg-PPV into account.



[1] S. Q. Wu, M. Ji, C. Z. Wang, M. C. Nguyen, X. Zhao, K. Umemoto, R. M. Wentzcovitch, K. M. Ho, J. Phys. Condensed Matter, 26, 035402 (2014).

[2] K. Umemoto, R. M. Wentzcovitch, S. Q. Wu, M. Ji, C. Z. Wang, and K. M. Ho, Earth Planet. Sci. Lett. 478, 40 (2017).