日本地球惑星科学連合2018年大会

講演情報

[EE] 口頭発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT22] 核-マントルの相互作用と共進化

2018年5月23日(水) 09:00 〜 10:30 国際会議室(IC) (幕張メッセ国際会議場 2F)

コンビーナ:飯塚 毅(東京大学)、渋谷 秀敏(熊本大学大学院先端科学研究部基礎科学部門地球環境科学分野)、土屋 卓久(愛媛大学地球深部ダイナミクス研究センター、共同)、太田 健二(東京工業大学大学院理工学研究科地球惑星科学専攻)、座長:河合 研志飯塚 理子

09:30 〜 09:45

[SIT22-15] Effects of iron on the lattice thermal conductivity of lower mantle minerals evaluated by Ab initio anharmonic lattice dynamics simulations

*出倉 春彦1土屋 卓久1,2 (1.愛媛大学地球深部ダイナミクス研究センター、2.東京工業大学地球生命研究所)

キーワード:下部マントル鉱物、格子熱伝導率、鉄固溶効果、第一原理計算

Determination of lattice thermal conductivity (κlat) of lower mantle (LM) minerals is a key to understanding the dynamics and evolution of the earth’s deep interior. Some recent experimental studies have shown that κlat of MgO and MgSiO3 are substantially reduced by Fe incorporation (Manthilake et al., 2012; Goncharov et al., 2015; Ohta et al., 2017; Hsieh et al., 2017); Okuda et al. (2017) reported very weak effects on MgSiO3 at lowermost mantle pressure. So, experimental results are still largely scattered and effects on Fe in κlat remains unclear. We recently established an ab initio technique to compute κlat of Fe-free systems based on the density-functional theory (DFT) combined with fully solving the phonon Boltzmann transport equation, which was successfully applied to MgO (Dekura and Tsuchiya, 2017). In this study, the technique is extended further to Fe-bearing systems, (Mg,Fe)SiO3 bridgmanite (Brg) and (Mg,Fe)O ferropericlase (FP), combined with the internally consistent DFT+U technique (Wang et al., 2015). Calculations demonstrate strong solid solution effects in both Brg and FP. The effects of Fe are found to be caused mainly by the substantial changes in harmonic properties.