日本地球惑星科学連合2018年大会

講演情報

[EE] 口頭発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT22] 核-マントルの相互作用と共進化

2018年5月23日(水) 09:00 〜 10:30 国際会議室(IC) (幕張メッセ国際会議場 2F)

コンビーナ:飯塚 毅(東京大学)、渋谷 秀敏(熊本大学大学院先端科学研究部基礎科学部門地球環境科学分野)、土屋 卓久(愛媛大学地球深部ダイナミクス研究センター、共同)、太田 健二(東京工業大学大学院理工学研究科地球惑星科学専攻)、座長:河合 研志飯塚 理子

09:45 〜 10:00

[SIT22-16] Silicate melt viscosities at high pressure: Experimental results and its implication

*Longjian Xie1Akira Yoneda1Geeth Manthilake3Daisuke Yamazaki1Yuji Higo2Yoshinori Tange2Nicolas Guignot4Denis Andrault3 (1.Institute for Planetary Materials, Okayama University、2.Japan Synchrotron Radiation Research Institute、3.The Laboratoire Magmas et Volcans、4.Synchrotron SOLEIL)

キーワード:Magma ocean, Viscosity, Silicate melts, Boron doped diamond, High pressure

It is believed that the early Earth experienced several episodes of magma-ocean, with a major one just after the giant Moon-forming impact. In this framework, the viscosity of the silicate melts is a key to understand the dynamics of the magma ocean and the recrystallization processes.
We succeeded to extend the experimental measurements of silicate-melt viscosity up to about 30 GPa and more than 2500 K, by devising an in-situ falling sphere method coupled with boron-doped diamond heater and ultra-fast cameral (1000 f/s) in the multi-anvil apparatus. We determined viscosities of molten forsterite, enstatite and diopside from 5 to 30 GPa and at temperatures just above their liquidus; reproducibility of the measurements is within a few percents. Experimental uncertainties were estimated by Monte Carlo method based on the uncertainties of pressure, temperature, falling sphere velocities and sphere size.
The viscosity of the melt with forsterite composition increases with increasing pressure along the liquidus, while those of enstatite and diopside melt compositions decrease with increasing pressure. Melt viscosities of the three compositions are found very low, in the range of 0.01 to 0.1 Pa.s, at mantle pressure conditions. The extremely low viscosity implies a short life-time for the magma ocean (1-6 thousands years) and, potentially, a fractional crystallization.