日本地球惑星科学連合2018年大会

講演情報

[EE] 口頭発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT22] 核-マントルの相互作用と共進化

2018年5月23日(水) 10:45 〜 12:15 国際会議室(IC) (幕張メッセ国際会議場 2F)

コンビーナ:飯塚 毅(東京大学)、渋谷 秀敏(熊本大学大学院先端科学研究部基礎科学部門地球環境科学分野)、土屋 卓久(愛媛大学地球深部ダイナミクス研究センター、共同)、太田 健二(東京工業大学大学院理工学研究科地球惑星科学専攻)、座長:角野 浩史舘野 繁彦飯塚 毅

11:00 〜 11:15

[SIT22-20] Hf-W chronology of the Brenham pallasite

*本馬 佳賢1飯塚 毅1 (1.東京大学大学院理学系研究科地球惑星科学専攻)

キーワード:Hf-W年代学、パラサイト隕石、コアーマントル分離

Pallasites are stony-iron meteorites consisting mainly of olivine and FeNi metal. Some relations with iron meteorites are pointed out for pallasites, implying that pallasites represent the core-mantle boundaries of their parent bodies. Therefore, pallasites potentially provide a unique opportunity to study core formation and core-mantle interaction on planetesimals. Further, chronological investigations of pallasites make it possible to decide the timescales of differentiation and crystallization of the planetesimals. In this study, the Hf-W chronology was applied to the Brenham main group pallasite. We evaluate the nucleosynthetic and neutron capture effects by combined W and Pt isotopic analysis. The metal fractions yielded ε182W values of -3.43 ± 0.15 and -3.85 ± 0.21 relative to the standard solution. The obtained ε183/184W values were in agreement with the standard solution, indicating that there is no nucleosynthetic anomaly in Brenham. The Pt isotope measurement was carried out on one of the two metal fractions analyzed for W isotopes. The positive anomaly in ε 196/195Pt represents the neutron capture effect on the Brenham metal. For correction of the neutron capture effect, we apply the reported correlation slope for iron meteorites (Kruijer et al., 2014). The corrected ε 182/184W value of -3.26 ± 0.29 corresponds to the model age of 2.0 ± 2.9 Myrs after the CAI formation, which is consistent with the olivine Al-Mg age of 1.24 +0.40/-0.28 Myrs and the Mn-Cr age of ~2.5 – 4 Myrs after the CAI formation (Baker et al., 2012; McKibbin et al., 2016). The gained Hf-W model age is also consistent with the early accretion of magmatic iron meteorites and apparently older than the non-magnetic iron meteorites, indicating that the Brenham metal formed during the early metal segregation on its parent body (Kruijer et al., 2013; Markowski et al., 2006).