日本地球惑星科学連合2018年大会

講演情報

[EE] 口頭発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT22] 核-マントルの相互作用と共進化

2018年5月23日(水) 13:45 〜 15:15 国際会議室(IC) (幕張メッセ国際会議場 2F)

コンビーナ:飯塚 毅(東京大学)、渋谷 秀敏(熊本大学大学院先端科学研究部基礎科学部門地球環境科学分野)、土屋 卓久(愛媛大学地球深部ダイナミクス研究センター、共同)、太田 健二(東京工業大学大学院理工学研究科地球惑星科学専攻)、座長:太田 健二飯塚 毅

14:45 〜 15:00

[SIT22-29] Ab-initio study of Earth’s inner core diffusion properties and the effect of light elements

*Sebastian Ritterbex1Taku Tsuchiya1 (1.Geodynamics Research Center Ehime University)

キーワード:Earth's inner core, self-diffusion, extrinsic mechanisms

Seismic observations provide evidence that the Earth’s inner core exhibits global anisotropy (Tanaka and Hamaguchi, 1997; Creager, 1999). This anisotropy is thought to result from the collective alignment of crystals and suggests that the inner core may be subject to plastic deformation. The plastic properties of the inner core are therefore believed to be of paramount importance for understanding inner core dynamics and core evolution.

The inner core is expected to be composed of a solid iron-nickel alloy with some unknown light elements (Mao et al., 1998). Under high pressure conditions in the deep Earth, plastic deformation is likely to be influenced by local chemistry via extrinsic mechanisms (Ita and Cohen, 1998). Especially the interaction between light elements and point defects may thus contribute to inner core plasticity. Diffusion of these point defects, such as vacancies, may control many mechanisms of plastic deformation including dislocation creep via climb. Therefore, understanding the mechanisms of (anisotropic) atomic diffusion is important to gain insight into the creep processes in Earth’s inner core.

Using ab-initio calculations, we study vacancy diffusion in hcp, bcc and fcc iron at pressure conditions up to the Earth’s inner core. Our results demonstrate that pressure suppresses defect concentration but does not strongly affect defect mobilities. We found that some light elements, particularly hydrogen, influence metallic bonding and enhance atomic diffusion. This allows for extrinsic deformation mechanisms in iron at inner core conditions. This extrinsic mechanism is totally different from those expected in the silicates and oxides of the Earth’s mantle. We will discuss how light elements, and especially hydrogen, may influence the rheological properties of the inner core iron alloy.