11:45 AM - 12:00 PM
[SIT25-05] Retrograde phases of former bridgmanite inclusions in superdeep diamonds?
Keywords:superdeep diamonds, bridgmanite, inclusions
In this study pyroxene inclusions in diamond grains from Juina (Brazil), one single-phase (Sample SL-14) and two composite inclusions of (Mg,Fe)SiO3 coexisting with (Mg,Fe)3Al2Si3O12 (Sample SL-13), and with (Mg,Fe)3Al2Si3O12 and (Mg,Fe)2SiO4 (Sample SL-80) have been analyzed to identify retrograde phases of former bridgmanite. XRD and Raman spectroscopy have revealed that these are orthopyroxene (Opx). (Mg,Fe)2SiO4 and (Mg,Fe)3Al2Si3O12 in these inclusions are identified as olivine and jeffbenite (TAPP). These inclusions are associated with inclusions of (Mg,Fe)O (SL-14), CaSiO3 (SL-80) and composite inclusion of CaSiO3+CaTiO3 (SL-13). XRD patterns of (Mg,Fe)SiO3 inclusions indicate that they consist of polycrystals. This polycrystalline textures together with high lattice strain of host diamond around these inclusions observed from EBSD may be an evidence for the retrograde phase transition of former bridgmanite.
Single-phase inclusions of (Mg,Fe)SiO3 in superdeep diamonds are suggested to represent a retrograde phase of bridgmanite and fully inherit its initial chemical composition, including a high Al and low Ni contents [Harte, Hudson, 2013; Kaminsky, 2017]. The composite inclusions of (Mg,Fe)SiO3 with jeffbenite and other silicate and oxide phases may be interpreted as exolusion products from originally homogeneous bridgmanite [Walter et al., 2011]. The bulk compositions of these composite inclusions are rich in Al, Ti, and Fe which are similar to Al-rich bridgmanite produced in experiments on the MORB composition. However, the retrograde origin of composite inclusions due to decomposition of Al-rich bridgmanite may be doubtful because each of observed phases may represent single-phase inclusions, i.e. bridgmanite and high pressure garnet (majoritic garnet), with similar compositional features.
This work has been partially supported by RFBR (16-05-00451 and 17-55-50062).
References
Harte B., Hudson N.F.C. (2013) Mineral Associations in Diamonds from the Lowermost Upper Mantle and Uppermost Lower Mantle // D.G. Pearson et al. (eds.), Proceedings of 10th International Kimberlite Conference, Special Issue of the Journal of the Geological Society of India, Vol.1, 235-253.
Kaminsky F.V. (2017) The Earth’s Lower Mantle. Springer International Publishing AG.
Walter M.J., Kohn S.C., Araujo D., Bulanova G.P., Smith C.B., Gaillou E., Wang J., Steele A., Shirey S.B. (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 334 (6052): 54-57.