Wed. May 29, 2019 10:45 AM - 12:15 PM
A04 (TOKYO BAY MAKUHARI HALL)
convener:Yusuke Ebihara(Research Institute for Sustainable Humanosphere, Kyoto University), Danny Summers(Memorial University of Newfoundland), Yoshizumi Miyoshi(Institute for Space-Earth Environmental Research, Nagoya University), Shinji Saito(Graduate School of Science, Nagoya University), Chairperson:Yusuke Ebihara(RISH, Kyoto University), Shinji Saito(ISEE, Nagoya University)
The inner magnetosphere is characterized by the dominance of intrinsic dipolar Earth's magnetic field. The dipolar magnetic field traps charged particles, resulting in the formation of unique particle environment known as the plasmasphere, the ring current, and the radiation belt. The inner magnetosphere is always changing because of incoming energy from the outer magnetosphere and the ionosphere in the forms of particles and electromagnetic fields. In the inner magnetosphere, the particle energy is transferred to the field energy, and vice versa. The mutual coupling between particles and fields also makes the inner magnetosphere unique. The outgoing energy to these regions is also known to be significant, such as precipitation into the upper atmosphere and sub-auroral disturbances. A number of satellites (e.g., DMSP, NOAA, Geotail, Cluster, THEMIS, Van Allen Probes, MMS, and Arase), ground-based instruments (e.g., SuperDARN and EISCAT radars, magnetometers, and cameras), and numerical simulations (e.g., global particle simulation, PIC simulation, and hybrid simulation) have successfully surveyed the inner magnetosphere, which deepen our knowledge significantly. USAF DSX, UCLA Elfin and NASA CeRES will be launched soon, being expected to provide important information. We solicit papers describing recent results on the inner magnetosphere and/or its coupling with the other regions, including the ionosphere and the outer magnetosphere.