日本地球惑星科学連合2019年大会

講演情報

[E] 口頭発表

セッション記号 A (大気水圏科学) » A-CG 大気海洋・環境科学複合領域・一般

[A-CG34] 衛星による地球環境観測

2019年5月30日(木) 10:45 〜 12:15 302 (3F)

コンビーナ:沖 理子(宇宙航空研究開発機構)、本多 嘉明(千葉大学環境リモートセンシング研究センター)、高薮 縁(東京大学 大気海洋研究所)、松永 恒雄(国立環境研究所地球環境研究センター/衛星観測センター)、座長:高橋 暢宏(名古屋大学宇宙地球環境研究所)

11:45 〜 12:00

[ACG34-17] Ensemble-Based Data Assimilation of GPM/DPR Reflectivity into the Nonhydrostatic Icosahedral Atmospheric Model NICAM

*小槻 峻司1寺崎 康児1三好 建正1 (1.国立研究開発法人 理化学研究所 計算科学研究センター)

キーワード:GPM、データ同化、NICAM-LETKF、降水、レーダー反射強度、アンサンブルカルマンフィルタ

This study aims to improve the precipitation forecasts from numerical weather prediction models through effective assimilation of satellite-observed precipitation data. The assimilation of precipitation data is known to be difficult mainly due to highly non-Gaussian statistics of precipitation-related variables. We have been developing a global atmospheric data assimilation system NICAM-LETKF, which comprises the Nonhydrostatic ICosahedral Atmospheric Model (NICAM) and Local Ensemble Transform Kalman Filter (LETKF). Using the NICAM-LETKF system, Kotsuki et al. (2017, JGR) successfully improved the weather forecasts by assimilating the Japan Aerospace eXploration Agency (JAXA)’s Global Satellite Mapping of Precipitation (GSMaP) data into the NICAM at 112-km horizontal resolution. However, assimilating space-borne precipitation radar data remains to be a challenging issue.

This study pioneers to assimilate radar reflectivity measured by the Dual-frequency Precipitation Radar (DPR) onboard the Global Precipitation Measurement (GPM) core satellite into the NICAM. We conduct the NICAM-LETKF experiments at 28-km horizontal resolution with explicit cloud microphysics of a single-moment 6-class bulk microphysics scheme. To simulate GPM/DPR reflectivity from NICAM model outputs, the joint-simulator (Hashino et al. 2013; JGR) is used. Our initial tests showed a better match with the observed reflectivity by assimilating GPM/DPR reflectivity into NICAM forecasts. However, the results from a 1-month data assimilation cycle experiment showed general degradation by assimilating GPM/DPR reflectivity. For better use of GPM/DPR reflectivity data, we are exploring to estimate model cloud physics parameters by assimilating them. This presentation will include the most recent progress up to the time of the meeting.