日本地球惑星科学連合2019年大会

講演情報

[J] 口頭発表

セッション記号 A (大気水圏科学) » A-CG 大気海洋・環境科学複合領域・一般

[A-CG41] 地球惑星科学における航空機観測利用の推進

2019年5月28日(火) 15:30 〜 17:00 201B (2F)

コンビーナ:高橋 暢宏(名古屋大学 宇宙地球環境研究所)、小池 真(東京大学大学院 理学系研究科 地球惑星科学専攻)、町田 敏暢(国立環境研究所)、篠田 太郎(名古屋大学宇宙地球環境研究所)、座長:高橋 暢宏(名古屋大学宇宙地球環境研究所)

15:45 〜 16:00

[ACG41-02] New observation strategies for typhoon intensity over the western North Pacific

*山田 広幸1坪木 和久2篠田 太郎2久保田 尚之3高橋 幸弘3長浜 則夫4清水 健作4大東 忠保5伊藤 耕介1山口 宗彦6中澤 哲夫6 (1.琉球大学、2.名古屋大学、3.北海道大学、4.明星電気、5.防災科学技術研究所、6.気象庁気象研究所)

キーワード:航空機観測、台風、北西太平洋

Recent activities on typhoon intensity observation/estimation using aircraft reconnaissance and ground-based Doppler radars in the western North Pacific are introduced. Since aircraft reconnaissance by the US military was ceased in 1987, new techniques of intensity estimation using microwave radiometer and a geostationary satellite are used in this basin without enough verification. The major obstacle of aircraft reconnaissance is the difficulty of having a specially-designed propeller aircraft that withstands strong turbulence. Since wind speed in a typhoon is stronger in the lower troposphere, it takes a great deal of labor and expense to measure the center position and the central pressure of a typhoon through low-altitude flight with slow speed. On the other hand, since the winds become weaker in the upper troposphere, it is possible to fly into the typhoon center if the risks of heavy icing and severe turbulence in a convective burst can be avoided by using an airborne weather radar. During T-PARCII (Tropical Cyclone-Pacific Asian Research Campaign for Improvement of Intensity Estimations / Forecasts), we succeeded in observing the central pressure of two intense typhoons, Lan (2017) and Trami (2018), by using a commercial jet aircraft (Gulfstream-II) with a newly-developed GPS dropsonde system. These flight missions were made in the upper troposphere (43,000ft, approximately 13.7 km) and were marked by very weak turbulence during eyewall penetration. These flights demonstrated a possibility of typhoon intensity observation using a civil aircraft. In the Pacific coast of Japan and Philippines, Doppler radars became available in this decade. The combination of aircraft reconnaissance off the coast with the ground-based velocity track display (GBVTD) analysis near the coast will provide accurate information on typhoon intensity.



Acknowledgements: This work was supported by JSPS KAKENHI Grant Numbers JP16H06311, JP16H04053, JP18H03805, and the Science and Technology Research Partnership for Sustainable Development (SATREPS) Understanding Lightning and Thunderstorm (ULAT) project.