日本地球惑星科学連合2019年大会

講演情報

[E] ポスター発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT21] 核-マントルの相互作用と共進化

2019年5月27日(月) 17:15 〜 18:30 ポスター会場 (幕張メッセ国際展示場 8ホール)

コンビーナ:河合 研志(東京大学大学院理学系研究科地球惑星科学専攻)、飯塚 毅(東京大学)、太田 健二(東京工業大学大学院理工学研究科地球惑星科学専攻)、土屋 卓久(愛媛大学地球深部ダイナミクス研究センター)

[SIT21-P20] Electrical resistivity of hcp Fe-Si alloys at high pressure and temperature

*井上 勇人1末広 翔1太田 健二1廣瀬 敬2,3大石 泰生4 (1.東京工業大学理学院地球惑星科学系、2.東京工業大学地球生命研究所、3.東京大学大学院理学系研究科地球惑星科学専攻、4.高輝度光科学研究センター)

キーワード:電気伝導度、熱伝導率、地球コア

Silicon (Si) has been repeatedly suggested to be the major light element in the Earth’s core that mainly consists of iron [1]. Alloying the light element(s) affects a variety of physical properties of iron. Electrical and thermal conductivities strongly constrain the dynamics and thermal evolution of Earth’s core and these parameters are linked by the Wiedemann-Franz law (κ= σLT; κ: thermal conductivity, σ: electrical conductivity, L: Lorenz number, T: absolute temperature). However, measurements of electrical and thermal conductivities under static condition at extremely high pressures (P) and temperature (T) are limited for pure iron [2], [3]. The estimates of the core conductivity considering the effect of light element(s) have been done based on the resistivity saturation model, but the validity of the model at the core condition is unclear [4], [5].
In this study, we examined electrical resistivity (the reciprocal of electrical conductivity) of Fe-2, 4 and 6.5 wt.%Si at high P-T conditions in an internally-heated diamond anvil cell (IHDAC) up to 99 GPa and 2910 K. Our results of electrical resistivity of hcp Fe-Si alloys showed its nonlinear temperature dependence, indicating the occurrence of the resistivity saturation. The resistivity saturation in Fe-Si alloys observed in this study supports the notion of high core conductivity and resulting molten lowermost mantle and young inner core.

References: [1] Poirier: Phys. Earth Planet. Inter. 85, 319-337 (1994).;[2] Ohta et al.: Nature 534, 95–98 (2016).;[3] Konôpková et al.: Nature 534, 99–101 (2016).;[4] Gomi et al.: Phys. Earth Planet. Inter. 224, 88–103 (2013).;[5] Gomi et al.: Earth Planet. Sci. Lett. 451, 51–61 (2016).