日本地球惑星科学連合2019年大会

講演情報

[J] 口頭発表

セッション記号 M (領域外・複数領域) » M-AG 応用地球科学

[M-AG39] 海洋地球インフォマティクス

2019年5月30日(木) 15:30 〜 17:00 A10 (東京ベイ幕張ホール)

コンビーナ:坪井 誠司(海洋研究開発機構)、高橋 桂子(国立研究開発法人海洋研究開発機構)、金尾 政紀(国立極地研究所)、松岡 大祐(海洋研究開発機構)、座長:坪井 誠司松岡 大祐

16:20 〜 16:35

[MAG39-10] Super-Resolution Simulation for Real-Time Prediction of Urban Micrometeorology

*大西 領1杉山 大祐1松田 景吾1 (1.国立研究開発法人海洋研究開発機構)

キーワード:超解像、深層学習、建物解像都市計算、マルチスケールデータ同化、IoT

We propose a super-resolution (SR) simulation system that consists of a physics-based meteorological simulation and an SR method based on a deep convolutional neural network (CNN). The CNN is trained using pairs of high-resolution (HR) and low-resolution (LR) images created from meteorological simulation results for different resolutions so that it can map LR simulation images to HR ones. The proposed SR simulation system, which performs LR simulations, can provide HR prediction results in much shorter operating cycles than those required for corresponding HR simulation prediction system. We apply the SR simulation system to urban micrometeorology, which is strongly affected by buildings and human activity. Urban micrometeorology simulations that need to resolve urban buildings are computationally costly and thus cannot be used for operational real-time predictions even when run on supercomputers. We performed HR micrometeorology simulations on a supercomputer to obtain datasets for training the CNN in the SR method. It is shown that the proposed SR method can be used with a spatial scaling factor of 4 and that it outperforms conventional interpolation methods by a large margin. It is also shown that the proposed SR simulation system has the potential to be used for operational urban micrometeorology predictions.