日本地球惑星科学連合2019年大会

講演情報

[E] ポスター発表

セッション記号 M (領域外・複数領域) » M-GI 地球科学一般・情報地球科学

[M-GI30] Data assimilation: A fundamental approach in geosciences

2019年5月29日(水) 10:45 〜 12:15 ポスター会場 (幕張メッセ国際展示場 8ホール)

コンビーナ:中野 慎也(情報・システム研究機構 統計数理研究所)、藤井 陽介(気象庁気象研究所)、宮崎 真一(京都大学理学研究科)、三好 建正(理化学研究所)

[MGI30-P03] Accurate estimation of posterior error covariance in a 4D-Var inverse analysis

*丹羽 洋介1,2藤井 陽介2,3 (1.国立環境研究所、2.気象庁気象研究所、3.統計数理研究所)

キーワード:逆解析、データ同化、解析誤差共分散

The four-dimensional variational method (4D-Var) is one prominent data assimilation/inversion method. However, it is a non-trivial task for a conventional 4D-Var to estimate a posterior error variance-covariance matrix. This study developed a method to estimate a posterior error variance-covariance matrix especially focusing on its off-diagonal elements, i.e., covariance. Off-diagonal elements are usually difficult to be estimated but provide error correlations that are beneficial for interpreting optimized parameter variations. The method was developed within a 4D-Var framework using a quasi-Newton method with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula. This study newly introduces numerical techniques that ensure conjugacy among the set of increment vector pairs in the BFGS formula. Through application to an inverse problem of atmospheric CO2, the developed method was evaluated with three diagnostic measures and compared against existing methods. The evaluation revealed that the developed method could provide accurate estimates of the posterior variance-covariance matrix, in terms not only of the diagonal but also of the off-diagonal elements. Although far more expensive than optimal state estimation, the computational efficiency was found reasonable for practical use, especially in conjunction with an ensemble approach.