日本地球惑星科学連合2019年大会

講演情報

[J] 口頭発表

セッション記号 P (宇宙惑星科学) » P-CG 宇宙惑星科学複合領域・一般

[P-CG25] 惑星大気圏・電磁圏

2019年5月28日(火) 10:45 〜 12:15 A05 (東京ベイ幕張ホール)

コンビーナ:関 華奈子(東京大学大学院理学系研究科)、今村 剛(東京大学大学院 新領域創成科学研究科)、前澤 裕之(大阪府立大学大学院理学系研究科物理科学科)、寺田 直樹(東北大学大学院理学研究科)、座長:中川 広務(東北大学 大学院理学研究科 地球物理学専攻太陽惑星空間物理学講座 惑星大気物理学分野)、関 華奈子(東京大学大学院理学系研究科地球惑星科学専攻)

11:30 〜 11:45

[PCG25-08] The influence of Martian crustal magnetic fields on atmospheric escape

*Dave A Brain1,2Robin Ramstad1Yaxue Dong1Tristan Weber1Shogo Inui2Kanako Seki2Andrew Poppe3Riku Jarvinen4Jim McFadden3Jasper Halekas5Jared Espley6David Mitchell3Laila Andersson1Bruce Jakosky1 (1.University of Colorado、2.University of Tokyo、3.University of California Berkeley、4.Finnish Meteorological Institute、5.University of Iowa、6.NASA Goddard Space Flight Center)

キーワード:Mars, Atmospheric escape, Magnetospheres

At present the influence of Martian crustal magnetic fields on atmospheric escape rates is debated. Since Mars lacks a significant global dynamo magnetic field, the presence of strong crustal fields over a significant fraction of the surface could shield portions of the atmosphere from the incident solar wind. The crustal fields could also allow or even enhance atmospheric escape through numerous cusp regions that are magnetically connected to the solar wind. This issue is of interest because the answer has implications for how atmospheric escape has operated on Mars over the history of the planet, including earlier times when Mars was more widely magnetized or even possessed a dynamo field. It is also relevant for assessing whether a global magnetic field is important for atmospheric retention. To this point, both modeling and observational studies appear to disagree on whether crustal fields significantly influence the escape of ions.

We will present the results of a new analysis of ion measurements from the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft mission made over four years. We examine how escape rates vary as Mars rotates and as a function of the solar zenith angle of strong crustal fields, including the dependence on ion energy and species. We also explore whether ion escape rates are larger, in a global sense, above crustal fields compared to non-magnetized regions. Finally, we introduce recent results relevant for evaluating ion escape from individual cusps, including from kinetic models of Martian cusp regions.