日本地球惑星科学連合2019年大会

講演情報

[E] 口頭発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM11] Dynamics of Magnetosphere and Ionosphere

2019年5月30日(木) 09:00 〜 10:30 A04 (東京ベイ幕張ホール)

コンビーナ:中溝 葵(情報通信研究機構 電磁波研究所)、尾崎 光紀(金沢大学理工研究域電子情報学系)、藤本 晶子(九州工業大学)、堀 智昭(名古屋大学宇宙地球環境研究所)、座長:中野 慎也(情報・システム研究機構 統計数理研究所)、野和田 基晴(山東大学)

09:30 〜 09:45

[PEM11-09] Ionospheric convection modeling based on convolution with a localized vector-valued basis function

*中野 慎也1堀 智昭2関 華奈子3西谷 望2 (1.統計数理研究所、2.名古屋大学宇宙地球環境研究所、3.東京大学大学院理学系研究科)

キーワード:電離圏対流、SuperDARN、球面ガウス関数

Divergence free assumption is useful for modeling the flow velocity distribution in the ionosphere where plasma velocity can be assumed to be orthogonal to a potential electric field. If the divergence of two-dimensional plasma velocity is assumed to be zero, we can consider a stream function yielding the plasma velocity distribution. In order to estimate the two-dimensional flow velocity distribution in the ionosphere, we propose a framework which expresses the stream function by a convolution with a spherical Gaussian function. From this spherical Gaussian function, we can obtain a localized vector-valued basis function for flow velocity distribution satisfying the divergence-free condition. Accordingly, flow velocity distribution can be represented by a convolution with the vector-valued basis functions. We combine this model with a state space model and estimate a temporal evolution using the Kalman filter algorithm. Hyperparameters of the model are determined by maximizing marginal likelihood.

The proposed framework is applied for estimating the two-dimensional ionospheric convection pattern from the Super Dual Auroral Radar Network (SuperDARN) data. Although there are some wide gaps in the spatial coverage of the SuperDARN radar network for ionospheric observation, the use of the localized basis function enhances the robustness of the estimate. This basis function also enables us to evaluate the uncertainty of the estimate which would be helpful for incorporating other observations. Some results of the analysis of the SuperDARN data will be demonstrated.