日本地球惑星科学連合2019年大会

講演情報

[J] 口頭発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM17] 宇宙プラズマ理論・シミュレーション

2019年5月30日(木) 13:45 〜 15:15 A03 (東京ベイ幕張ホール)

コンビーナ:梅田 隆行(名古屋大学 宇宙地球環境研究所)、天野 孝伸(東京大学 地球惑星科学専攻)、成行 泰裕(富山大学人間発達科学部)、中村 匡(福井県立大学)、座長:梅田 隆行(名古屋大学宇宙地球環境研究所)、天野 孝伸(東京大学 地球惑星科学専攻)

14:15 〜 14:30

[PEM17-03] Contour Dynamics for Vlasov–Poisson Plasma with the Periodic Boundary

*佐藤 大樹1渡邉 智彦1前山 伸也1 (1.名古屋大学)

Zabusky, Hughes, and Roberts presented a contour dynamics algorithm for the Euler equations of fluid dynamics in two dimensions [1].On the paper, they succeed in calculating time development of contours of vorticity on the x-y plane with the contour dynamics(CD) algorithm, which is a method by using contours of vorticity, piece-wise constant function, and line integrals of Green’s function on the contours. The CD method does not use underlying lattice, but uses nodes on the contours, and it can lead to more accurate calculation for complex deformation of vorticity.

This method is also applied to Vlasov–Poisson system. In order to study the CD in the Vlasov–Poisson plasma, we have developed a method to implement the periodic of potential and its derivative are satisfied.To check validity of out method, we test the Linear Landau damping by means of the CD scheme.While discretization of the distribution function might lead to some difference from that with continuous distribution, soundness of our new scheme is confirmed in comparison with analytical solutions.

We are also investigating in behaviors of the CD in the continuous limit, and in the nonlinear Landau damping as well.


Reference 1. Contour dynamics for the Euler equations in two Dimensions (1978)