日本地球惑星科学連合2019年大会

講演情報

[J] 口頭発表

セッション記号 P (宇宙惑星科学) » P-EM 太陽地球系科学・宇宙電磁気学・宇宙環境

[P-EM19] 太陽物理学の最前線

2019年5月26日(日) 15:30 〜 17:00 A03 (東京ベイ幕張ホール)

コンビーナ:今田 晋亮(名古屋大学宇宙地球環境研究所)、横山 央明(東京大学大学院理学系研究科)、清水 敏文(宇宙航空研究開発機構宇宙科学研究所)、勝川 行雄(自然科学研究機構国立天文台)、座長:今田 晋亮

16:45 〜 17:00

[PEM19-06] Detection and energy derivation of nano-flares based on deep learning

*河合 敏輝1今田 晋亮1 (1.名古屋大学宇宙地球環境研究所)

キーワード:深層学習、ナノフレア

Coronal heating is one of the long-standing problems in solar physics. So far, two primary mechanisms have been proposed to explain how the corona is heated, namely small-scale magnetic reconnection and wave dissipation. To estimate the contribution of small-scale magnetic reconnection, so called nano-flares, to heat the corona is crucial to solve the coronal heating problem. The purpose of this study is to develop a method which can accurately detect nano-flares and estimate their energies. Firstly, we carry out one-dimensional hydrodynamic simulations of coronal loops heated by nano-flares which have wide range of energy (1023 < E < 1027 erg). Secondly, we calculate the temporal variation of EUV and soft X-ray spectra of coronal loops from the simulation results by using CHIANTI atomic database. We perform these procedures more than 1,000 times with randomized flare energy and occurrence time to produce various datasets. Finally, we train a Deep Neural Network (DNN) by using these datasets to estimate the energy distribution and occurrence times of flares from soft X-ray observation. Moreover, we apply trained DNN to actual soft X-ray observations. As a result, we obtain reasonable occurrence times and energies of flares comparing another method which regards flare energy as change amount of thermal energy of the loop.