14:00 〜 14:15
[SCG56-14] S-netを用いた海域総合解析
キーワード:S-net、沈み込み帯、海底観測
沈み込み帯研究のフロンティアである前弧の海域下において,防災科学技術研究所は新たに日本海溝海底地震津波観測網(S-net)を構築した.S-netは東北日本の太平洋側の海岸から約200kmの範囲を海溝直交方向に約30km,海溝平行方向に50-60km間隔でカバーする150点の海底観測点からなり,その速度と加速度の連続データが,2018年10月より2016年8月に遡って公開された.観測空白域に設置されたこの観測網は,沈み込み帯の構造およびダイナミクスの解明に風穴をあける可能性がある.本発表ではこの新しいデータを用いた最初の研究を紹介する.
まず,海底の速度計・加速度計の3軸の方向を,加速度計による重力加速度および遠地地震波形の振動軌跡を用いて推定した.その結果,2つの地震に伴って1°以上のケーブル軸周りの回転が推定されたが,それ以外には大きな時間変化は見られないことがわかった.また,センサーの方位は,5-10°の精度で推定できた.さらに得られた軸方向を用い,東西・南北・上下方向の波形を作成した(高木・他,本大会).
海底観測に基づく震源決定で重要となる浅部の堆積層についての研究では,PS変換波を用いた推定により,ほとんどの観測点で,350-400mの厚さに相当する1.3 – 1.4 秒のPS-P 時間が観測された.ただし,千島-日本海溝の会合部海側と根室沖の海溝陸側では,さらに堆積層が厚い可能性がある(東・他,本大会).また,雑微動を用いた相関解析でも10秒以下の周期で1.5 km/s と0.3 km/sの2つの群速度で伝播するレイリー波が見られ,それぞれ堆積層と海水層にエネルギーを持つモードと推定された(高木・他,本大会).さらに,近地地震波形の読み取りによっても,堆積層およびプレート構造の影響を明らかにすることができた.1次元および3次元速度構造から期待される走時との比較により,それぞれ陸域の地震の海溝海側での観測で3秒程度(岡田・他,本大会),海域の地震で場所により2秒程度(豊国・他,本大会)の走時残差が見られた.これらは,震源決定や地震波トモグラフィーの際の観測点補正などとして用いることができる(岡田・他,本大会; 豊国・他,本大会).
もう少し深い上盤の速度構造もS-netのデータにより明らかとなった.遠地地震の表面波の到達時間の差を用いた位相速度推定では,20-50sの周期について3.6-3.9km/sの位相速度を得ることができた.これはRayleigh波の位相速度として妥当な値である.また,得られた位相速度の空間分布は,宮城県・福島県沖の領域で周りに比べて高速度を示した(石上・高木,本大会).この高速度は,S-netを用いた近地地震の地震波トモグラフィーからも推定されている.また,このトモグラフィーでは,S-netの利用により海溝に近い場所までの速度構造がよく求まることが示された(豊国・他,本大会).雑微動解析によっても,周期30秒程度の長周期まで観測点間を伝播するレイリー波およびラブ波を抽出することができた.これらも地殻構造の推定に用いることができる(高木・他,本大会).また,海域の前弧上盤の構造についてはS-net 観測点を用いたS波スプリッティング解析によって速度異方性の特徴が明らかになった.プレート境界地震を用いた解析から,速いS波の振動方向は,海溝と平行な方向を向く傾向があり,マントルウエッジの鉱物の選択配向や上盤地殻のクラックの向きを表している可能性がある(内田・他,本大会).
プレート境界においては,繰り返し地震がS-net速度波形によっても抽出できることが示された.プレート境界でのスロースリップの検出やプレート境界の位置推定に役立つ可能性がある(内田・他,本大会).さらに,S-net加速度計のデータの中には,潮汐と思われる変動が観測されるものもあり,プレート境界におけるスロースリップによる傾斜変動を捉えられる可能性があるかもしれない(高木・他,本大会).
以上のように,東北日本の前弧海洋底における連続観測について,そのデータの特性が明らかになるとともに,浅部から深部にわたる沈み込み帯の構造や変動についての新たな知見が得られつつある.これらの研究は技術的にも内容的にもお互いに密接に関わっており,総合的な解析の推進がさらなるデータ活用につながると考えられる.
謝辞:S-netの構築・データ蓄積および公開に携わられた皆様に感謝いたします.
まず,海底の速度計・加速度計の3軸の方向を,加速度計による重力加速度および遠地地震波形の振動軌跡を用いて推定した.その結果,2つの地震に伴って1°以上のケーブル軸周りの回転が推定されたが,それ以外には大きな時間変化は見られないことがわかった.また,センサーの方位は,5-10°の精度で推定できた.さらに得られた軸方向を用い,東西・南北・上下方向の波形を作成した(高木・他,本大会).
海底観測に基づく震源決定で重要となる浅部の堆積層についての研究では,PS変換波を用いた推定により,ほとんどの観測点で,350-400mの厚さに相当する1.3 – 1.4 秒のPS-P 時間が観測された.ただし,千島-日本海溝の会合部海側と根室沖の海溝陸側では,さらに堆積層が厚い可能性がある(東・他,本大会).また,雑微動を用いた相関解析でも10秒以下の周期で1.5 km/s と0.3 km/sの2つの群速度で伝播するレイリー波が見られ,それぞれ堆積層と海水層にエネルギーを持つモードと推定された(高木・他,本大会).さらに,近地地震波形の読み取りによっても,堆積層およびプレート構造の影響を明らかにすることができた.1次元および3次元速度構造から期待される走時との比較により,それぞれ陸域の地震の海溝海側での観測で3秒程度(岡田・他,本大会),海域の地震で場所により2秒程度(豊国・他,本大会)の走時残差が見られた.これらは,震源決定や地震波トモグラフィーの際の観測点補正などとして用いることができる(岡田・他,本大会; 豊国・他,本大会).
もう少し深い上盤の速度構造もS-netのデータにより明らかとなった.遠地地震の表面波の到達時間の差を用いた位相速度推定では,20-50sの周期について3.6-3.9km/sの位相速度を得ることができた.これはRayleigh波の位相速度として妥当な値である.また,得られた位相速度の空間分布は,宮城県・福島県沖の領域で周りに比べて高速度を示した(石上・高木,本大会).この高速度は,S-netを用いた近地地震の地震波トモグラフィーからも推定されている.また,このトモグラフィーでは,S-netの利用により海溝に近い場所までの速度構造がよく求まることが示された(豊国・他,本大会).雑微動解析によっても,周期30秒程度の長周期まで観測点間を伝播するレイリー波およびラブ波を抽出することができた.これらも地殻構造の推定に用いることができる(高木・他,本大会).また,海域の前弧上盤の構造についてはS-net 観測点を用いたS波スプリッティング解析によって速度異方性の特徴が明らかになった.プレート境界地震を用いた解析から,速いS波の振動方向は,海溝と平行な方向を向く傾向があり,マントルウエッジの鉱物の選択配向や上盤地殻のクラックの向きを表している可能性がある(内田・他,本大会).
プレート境界においては,繰り返し地震がS-net速度波形によっても抽出できることが示された.プレート境界でのスロースリップの検出やプレート境界の位置推定に役立つ可能性がある(内田・他,本大会).さらに,S-net加速度計のデータの中には,潮汐と思われる変動が観測されるものもあり,プレート境界におけるスロースリップによる傾斜変動を捉えられる可能性があるかもしれない(高木・他,本大会).
以上のように,東北日本の前弧海洋底における連続観測について,そのデータの特性が明らかになるとともに,浅部から深部にわたる沈み込み帯の構造や変動についての新たな知見が得られつつある.これらの研究は技術的にも内容的にもお互いに密接に関わっており,総合的な解析の推進がさらなるデータ活用につながると考えられる.
謝辞:S-netの構築・データ蓄積および公開に携わられた皆様に感謝いたします.