日本地球惑星科学連合2019年大会

講演情報

[J] 口頭発表

セッション記号 S (固体地球科学) » S-GD 測地学

[S-GD03] 測地学一般・GGOS

2019年5月27日(月) 13:45 〜 15:15 304 (3F)

コンビーナ:松尾 功二(国土地理院)、横田 裕輔(東京大学生産技術研究所)、若杉 貴浩(国土交通省国土地理院)、座長:小門 研亮(国土地理院)、横田 裕輔

14:50 〜 15:05

[SGD03-05] 地震・地殻変動の高精度観測のためのレーザー歪計ネットワークの構築

*新谷 昌人1高森 昭光1森井 亙2勝間田 明男3小林 昭夫3伊藤 武男4奥田 隆4大久保 慎人5 (1.東京大学地震研究所、2.京都大学防災研究所、3.気象庁気象研究所、4.名古屋大学大学院環境学研究科、5.高知大学教育研究部自然科学系)

キーワード:歪計、レーザー、地殻変動、神岡、犬山、天竜船明

Laser interferometers are widely used for precise measurements of displacement with reference to wavelength of light. As their geophysical application, a laser strainmeter is used for measuring deformation of the ground by sensing distance between two separated points, enabling to detect small strain changes over wide frequency range [1]. The advantages of the laser strainmeter over conventional strainmeters using mechanical references are high resolution with a long baseline, resonance-free response of optical reference, and low-drift detection using stabilized laser wavelength. Apart from the instrumental detectability, local noise sources, such as changes in temperature, air pressure, and ground water level, will affect both the instrument and the ground, and should be properly evaluated to examine the measured strain data. For this purpose, we constructed a network of laser strainmeters deployed at three underground sites in Japan: Kamioka (Gifu Pref.), Inuyama (Aichi Pref.), and Tenryu-Funagira (Shizuoka Pref.). These strain data are analyzed to evaluate performance of instruments installed at these sites as well as to identify common geophysical signals.



At Kamioka site, two laser strainmeters with baselines of 100m and 1500m are in operation [2, 3]. At Inuyama and Tenryu-Funagira sites, a 30-m strainmeter and a 400-m one are installed, respectively [4]. These strainmeters clearly detect earth tides, and their amplitudes are consistent with the calculation based on the tidal force, the standard Earth's model, and the topographic effects around the sites. Using the site effects, coseismic strain steps observed by the strainmeter network are compared with fault parameters estimated from seismic observations and the detectability of the fault mechanisms using the strainmeter network is estimated. For long-term strain changes, local disturbances of the sites and detectability of the network are estimated using GNSS data. In the presentation, we discuss detectability of the strainmeter network for seismic and geodetic signals and prospects for monitoring crustal activities using long-baseline laser strainmeters.



References

[1] V. Vali, R. S. Krogstad, and R. W. Moss, Laser interferometer for earth strain measurements, Rev. Sci. Instrum., 36, 1352, 1965.

[2] A. Araya, A. Takamori, W. Morii, K. Miyo, M. Ohashi, K. Hayama, T. Uchiyama, S. Miyoki, and Y. Saito, Design and operation of a 1500-m laser strainmeter installed at an underground site in Kamioka, Japan, Earth, Planets and Space, 69:77, 2017.

[3] T. Akutsu, M. Ando, S. Araki, A. Araya, T. Arima et al., Construction of KAGRA: an underground gravitational-wave observatory, Prog. Theor. Exp. Phys., 013F01, 2018.

[4] A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband earth strain observations, Rev. Sci. Instrum., 73, 6, 2434-2439, 2002.