JpGU-AGU Joint Meeting 2020

講演情報

[E] ポスター発表

セッション記号 A (大気水圏科学) » A-AS 大気科学・気象学・大気環境

[A-AS01] ⾼性能スーパーコンピュータを⽤いた最新の⼤気科学

コンビーナ:瀬古 弘(気象研究所)、三好 建正(理化学研究所)、小玉 知央(独立行政法人海洋研究開発機構)、滝川 雅之(独立行政法人海洋研究開発機構)

[AAS01-P03] Toward assimilation of dense and frequent 3-D lightning location data on a severe local rainfall forecast

★Invited Papers

*前島 康光1牛尾 知雄2三好 建正1 (1.理化学研究所 計算科学研究センター、2.大阪大学大学院 工学研究科)

キーワード:データ同化、数値天気予報、メソ気象学

In recent years, a dense and frequent lightning observation system named “BOLT” was developed (e.g. Yoshida et al. 2014), observing every 10-6 seconds 3-dimensional lightning locations at 100-m resolution. The original data has a 70-km range in the horizontal and a 20-km range in the vertical. To assimilate the lightning location data with a regional numerical weather prediction model “SCALE” (Nishizawa et al. 2015), an observation operator to convert the model variables to lightning data is needed. In general, lightning is triggered by large electric charge originated from graupel collisions with strong updraft. Therefore, we investigated a relationship between the lightning observation data and the model graupel data. First, we performed a 30-seceond-update, 100-m-mesh SCALE-LETKF (Miyoshi et al. 2016, Lien et al. 2017) experiment with every 30-second Phased Array Weather Radar at Osaka University (Ushio et al. 2014), and we created every 30-second model data. For the lightning data, we calculated every 30-second lightning frequency per model grid. We investigated a scatter plot of the lightning frequency and the model graupel mixing ratio.

Using all lightning and graupel data, we could not find a clear relationship. However, by applying a criterion on lightning generation (Takahashi 1978), we found a high correlation between the lightning frequency and the graupel mixing ratio. Based on the result, we will develop an observation operator and try to contribute to a severe local rainfall forecast.