JpGU-AGU Joint Meeting 2020

講演情報

[J] 口頭発表

セッション記号 A (大気水圏科学) » A-CG 大気海洋・環境科学複合領域・一般

[A-CG57] 北極域の科学

コンビーナ:庭野 匡思(気象研究所)、鄭 峻介(北海道大学 北極域研究センター)、中村 哲(北海道大学大学院地球環境科学研究院)、小野 純(東京大学大気海洋研究所)

[ACG57-03] A recent summer wave pattern in the Arctic explains co-occurrences of European heat waves, and wildfires in Siberia, Alaska, and Canada

*安成 哲平1,2,3Kim Kyu-Myong4中村 尚5Choi Nakbin6Lee Myong-In6立花 義裕7松見 豊8若林 成人9da Silva Arlindo4 (1.北海道大学 北極域研究センター、2.北海道大学 国際連携研究教育局(GI-CoRE) 北極域研究グローバルステーション、3.北海道大学 広域複合災害研究センター、4.NASA Goddard Space Flight Center、5.東京大学 先端科学技術研究センター、6.Ulsan National Institute of Science and Technology、7.三重大学 生物資源学研究科、8.名古屋大学 宇宙地球環境研究所、9.北海道大学 大学院工学院)

キーワード:熱波、森林火災、北極、大気汚染、気候

In recent years, we have often seen the news on European heat waves, and wildfires in/around the Arctic region such as Siberia and Alaska. Those would be hazards and also induce disasters, depending on their magnitude. Wildfire emits massive air pollutions (i.e., PM2.5) into the atmosphere and causes significant air pollutions in the downwind region [1,2]. Therefore, heat waves and wildfires are of large concern in general public these days.

In this presentation, we focus on when the Arctic air pollution reaches significant degrees and what the causes of the worse air quality for more than a recent decade. However, long-term assessment of air pollution in the Arctic region has been very difficult until recently because of the absence of continuous and extensive PM2.5 data. Using the latest NASA’s re-analysis data, MERRA-2 (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/), this long-term assessment of air pollutions (aerosols) in the Arctic has become possible because of high quality aerosol data based on the aerosol data assimilation with satellite data (especially more satellite data from 2003) [3].

Here we analyze the 20 worst air quality months in the Arctic in 2003-2017, showing that 13 months were the summer months (July and August) with significant wildfire occurrences. The 13-month mean atmospheric fields (composites) show the simultaneous surface warmth and high-pressure anomaly patterns in the lower and free troposphere over Europe, Siberia, and North America (i.e., Alaska and Canada), which was similar to an independently analyzed climate pattern observed in recent years. This climate (i.e., Arctic wave) pattern in summer was not seen before 2003 and only seen after that. Investigating more on this climate pattern would likely be a better index to predict the co-occurrences of European heat waves and wildfires across Siberia, Alaska, and Canada in summer in the future.

References:
[1] Ikeda, K., and H. Tanimoto (2015), Exceedances of air quality standard level of PM2.5 in Japan caused by Siberian wildfires, Environ. Res. Lett., 10, 105001, doi: 10.1088/1748-9326/10/10/105001.
[2] Yasunari, T. J., K.-M. Kim, A. M. da Silva, M. Hayasaki, M. Akiyama, and N. Murao (2018), Extreme air pollution events in Hokkaido, Japan, traced back to early snowmelt and large-scale wildfires over East Eurasia: Case studies, Sci. Rep., 8, 6413, doi:10.1038/s41598-018-24335-w.
[3] Randles, C. A., A. da Silva, V. Buchard, P. R. Colarco, A. S. Darmenov, R. C. Govindaraju, A. Smirnov, R. A. Ferrare, J. W. Hair, Y. Shinozuka, and C. Flynn, 2017. The MERRA-2 Aerosol Reanalysis, 1980-onward, Part I: System Description and Data Assimilation Evaluation, J. Clim., 30, 6823-6850, doi:10.1175/JCLI-D-16-0609.1.