JpGU-AGU Joint Meeting 2020

講演情報

[J] 口頭発表

セッション記号 M (領域外・複数領域) » M-AG 応用地球科学

[M-AG44] 福島原発事故により放出された放射性核種の環境動態

コンビーナ:津旨 大輔(一般財団法人 電力中央研究所)、高橋 嘉夫(東京大学大学院理学系研究科地球惑星科学専攻)、恩田 裕一(筑波大学アイソトープ環境動態研究センター)、北 和之(茨城大学理学部)

[MAG44-13] 福島第一原子力発電所事故によって放出された放射性セシウムの海洋中の動態に対する直接漏洩と河川供給の影響

*津旨 大輔1坪野 考樹1三角 和弘1立田 穣1恩田 裕一2青山 道夫2 (1.一般財団法人 電力中央研究所、2.筑波大学アイソトープ環境動態研究センター)

キーワード:福島第一原子力発電所事故、放射性セシウム、領域海洋モデル、直接漏洩、河川供給

A series of accidents at the Fukushima Dai-ichi Nuclear Power Plant (1F NPP) following the Great East Japan Earthquake and tsunami of 11 March 2011 resulted in the release of radioactive materials to the ocean. We used the Regional Ocean Model System (ROMS) to simulate the 137Cs activity in the oceanic area off Fukushima, with the sources of radioactivity being direct release, atmospheric deposition, river discharge, and inflow across the domain boundary. The direct release rate of 137Cs after the accident until the end of 2016 was estimated by comparing simulated results with measured 137Cs activities adjacent to the 1F NPP. River discharge rates of 137Cs were estimated by multiplying simulated river flow rates by the dissolved 137Cs activities, which were estimated by an empirical function. Inflow of 137Cs across the domain boundary was set according to the results of a North Pacific Ocean model. Because the spatiotemporal variability of 137Cs activity was large, the simulated results were compared with the annual averaged observed 137Cs activity distribution. Normalized annual averaged 137Cs activity distributions in the regional ocean were similar for each year from 2013 to 2016. This result suggests that the annual averaged distribution is predictable. Simulated 137Cs activity attributable to direct release was in good agreement with measurement data from the coastal zone adjacent to the 1F NPP. Comparison of the simulated results with measured activity in the offshore area indicated that the simulation slightly underestimated the activity attributable to inflow across the domain boundary. This result suggests that recirculation of subducted 137Cs to the surface layer was underestimated by the North Pacific model. During the study period, the effect of river discharge on oceanic 137Cs activity was small compared to the effect of directly released 137Cs.