JpGU-AGU Joint Meeting 2020

講演情報

[E] 口頭発表

セッション記号 M (領域外・複数領域) » M-GI 地球科学一般・情報地球科学

[M-GI33] Data assimilation: A fundamental approach in geosciences

コンビーナ:中野 慎也(情報・システム研究機構 統計数理研究所)、藤井 陽介(気象庁気象研究所)、三好 建正(理化学研究所)、宮崎 真一(京都大学理学研究科)

[MGI33-12] Iterative ensemble variational methods and its application for the prediction of geomagnetic secular variation

*中野 慎也1南 拓人2高橋 太3松島 政貴4清水 久芳5藤 浩明6 (1.情報・システム研究機構 統計数理研究所、2.神戸大学大学院理学研究科、3.九州大学大学院理学研究院、4.東京工業大学理学院地球惑星科学系、5.東京大学地震研究所、6.京都大学大学院理学研究科地磁気世界資料解析センター)

キーワード:Data assimilation、Ensemble variational method、Geomagnetic field、Geomagnetic secular variation

The 4-dimensional ensemble variational method (4DEnVar) is a data assimilation method which is easy to implement as a post-process. The iterative version of the 4DEnVAR, which is sometimes referred to as the iterative ensemble smoother, is also regarded as a useful tool for nonlinear data assimilation problems. Since these methods are derived based on a linear approximation of a dynamical system model, the behavior of the algorithm under ths situations with large uncertainties is not trivial. In this study, the accuracy of the algorithm was evaluated after considering second and higher order terms of the Taylor expansion of a system model. The sufficient conditions for finding a local maximum of the objective function are then explored, and the behavior of the algorithm under the situation with nonlinearity is discussed. The applications for the prediction of geomagnetic secular variation based on the above approach will also be introduced.