JpGU-AGU Joint Meeting 2020

講演情報

[J] ポスター発表

セッション記号 M (領域外・複数領域) » M-GI 地球科学一般・情報地球科学

[M-GI39] データ駆動地球惑星科学

コンビーナ:桑谷 立(国立研究開発法人 海洋研究開発機構)、長尾 大道(東京大学地震研究所)、上木 賢太(国立研究開発法人海洋研究開発機構)、伊藤 伸一(東京大学)

[MGI39-P08] Super-resolution for seafloor topography using deep convolutoinal neural networks

*日髙 弥子1松岡 大祐1桑谷 立1木戸 ゆかり1金子 純二1笠谷 貴史1木川 栄一1 (1.国立研究開発法人 海洋研究開発機構)

キーワード:海底地形図、超解像、SRCNN、SRGAN

Understanding the detailed information on seafloor topography is required to deal with natural disaster prevention, assessing and mitigating environmental problems, biogeographic studies, mineral mining, and a range of other topics. JAMSTEC has launched the new research program "Mathematical Seafloor Geomorphology" to establish a method to provide high resolution seafloor topography from existing low resolution data, by using super-resolution techniques based on deep convolutional neural networks (DCNNs). We applied two different algorithms of DCNN, a Super-Resolution Convolutional Neural Network (SRCNN) and a Super-Resolution Generative Adversarial Network (SRGAN) to improve the resolution of the data obtained from the middle part of the Okinawa Trough (southwest Japan). Both SRCNN and SRGAN produced better high super-resolution performance for both root mean square error (RMSE) and peak signal-to-noise ratio (PSNR) compared with bicubic interpolation. We will present the results, and would also like to discuss the effects of training data selection on the super-resolution performance.