JpGU-AGU Joint Meeting 2020

講演情報

[E] 口頭発表

セッション記号 M (領域外・複数領域) » M-IS ジョイント

[M-IS05] 新生代におけるアジアモンスーンおよびインド太平洋古気候

コンビーナ:山本 正伸(北海道大学大学院地球環境科学研究院)、Steven C Clemens(Brown University)、Hongbo Zheng(Research Center for Earth System Science, Yunnan University)、多田 隆治(東京大学大学院理学系研究科地球惑星科学専攻)

[MIS05-09] Changes in Tibetan Plateau latitude as an important factor for understanding East Asian climate since the Eocene: A modeling study

*Ran Zhang1 (1.Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China )

Previous climate modeling studies suggest that the surface uplift of the Himalaya–Tibetan plateau (TP) is a crucial parameter for the onset and intensification of the East Asian monsoon during the Cenozoic. Most of these studies have only considered the Himalaya–TP in its present location between ∼26°N and ∼40°N despite numerous recent geophysical studies that reconstruct the Himalaya–TP 10° or more of latitude to the south during the early Paleogene. We have designed a series of climate simulations to explore the sensitivity of East Asian climate to the latitude of the Himalaya–TP. Our simulations suggest that the East Asian climate strongly depends on the latitude of the Himalaya–TP. Surface uplift of a proto-Himalaya–TP in the subtropics intensifies aridity throughout inland Asia north of ∼40°N and enhances precipitation over East Asia. In contrast, the rise of a proto-Himalaya–TP in the tropics only slightly intensifies aridity in inland Asia north of ∼40°N, and slightly increases precipitation in East Asia. Importantly, this climate sensitivity to the latitudinal position of the Himalaya–TP is non-linear, particularly for precipitation across East Asia.