JpGU-AGU Joint Meeting 2020

講演情報

[E] ポスター発表

セッション記号 S (固体地球科学) » S-CG 固体地球科学複合領域・一般

[S-CG58] Science of slow earthquakes: Toward unified understandings of whole earthquake process

コンビーナ:井出 哲(東京大学大学院理学系研究科地球惑星科学専攻)、廣瀬 仁(神戸大学都市安全研究センター)、氏家 恒太郎(筑波大学生命環境系)、波多野 恭弘(大阪大学理学研究科)

[SCG58-P01] CMT inversion of offshore earthquakes along the Nankai Trough: Separated distributions of slow and regular earthquakes on the plate boundary

*武村 俊介1奥脇 亮2久保田 達矢3汐見 勝彦3木村 武志3野田 朱美3 (1.東京大学地震研究所、2.筑波大学、3.防災科学技術研究所)

キーワード:南海トラフ、CMT解析、海域の地震、3次元不均質構造

Due to complex three-dimensional (3D) heterogeneous structures, conventional one-dimensional (1D) analysis techniques using onshore seismograms can yield incorrect estimation of earthquake source parameters, especially dip angles and centroid depths of offshore earthquakes. Indeed, detail analysis of 2016 southeast off the Kii Peninsula earthquake revealed that observed seismic and tsunami record could be explained by low-angle thrust faulting on the plate boundary (e.g., Kubota et al., 2018; Takemura et al., 2018; Wallace et al., 2016) but regional 1D moment tensor analysis showed high-angle reverse faulting mechanism.

Combining long-term onshore seismic observations and numerical simulations of seismic wave propagation in a 3D model, we conducted centroid moment tensor (CMT) inversions of earthquakes along the Nankai Trough. Green’s functions for CMT inversions of moderate earthquakes were evaluated via OpenSWPC (Maeda et al., 2017) using the Japan Integrated Velocity Structure Model (Koketsu et al., 2012). We re-analyzed moderate (Mw 4.3-6.5) earthquakes listed in the F-net catalog (Fukuyama et al., 1998; Kubo et al., 2002) that occurred from April 2004 to August 2019. By introducing the 3D structures of the low-velocity accretionary prism and the Philippine Sea Plate, our CMT inversion method provided better constraints of dip angles and centroid depths for offshore earthquakes. These two parameters are important for evaluating earthquake types in subduction zones.

Our 3D CMT catalog of offshore earthquakes and published slow earthquake catalogs (e.g., Kano et al., 2018) along the Nankai Trough depicted spatial distributions of slip behaviors on the plate boundary. The regular and slow interplate earthquakes were separately distributed, with these distributions reflecting the heterogeneous distribution of effective strengths on the plate boundary. By comparing the spatial distribution of seismic slip on the plate boundary with the slip-deficit rate distribution (Noda et al., 2018), regions with strong coupling were identified.

Acknowledgments
We used F-net waveform data and the F-net MT catalog (https://doi.org/10.17598/NIED.0005). Our CMT catalog and CMT results of assumed source grids for each earthquake are available from https://doi.org/10.5281/zenodo.3661116. The FDM simulations of seismic wave propagation were conducted on the computer system of the Earthquake and Volcano Information Center at the Earthquake Research Institute, the University of Tokyo. This study was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers 17K14382 and 19H04626.