JpGU-AGU Joint Meeting 2020

講演情報

[E] 口頭発表

セッション記号 S (固体地球科学) » S-CG 固体地球科学複合領域・一般

[S-CG60] 機械学習による固体地球科学における現象及び理論の発見に向けて

コンビーナ:内出 崇彦(産業技術総合研究所 地質調査総合センター 活断層・火山研究部門)、小寺 祐貴(気象庁気象研究所)、久保 久彦(国立研究開発法人防災科学技術研究所)

[SCG60-04] Neural Network-Based Ground Motion Model Learning Site Property from Data

*岡崎 智久1岩田 具治1,2岩城 麻子3藤原 広行3上田 修功1 (1.理化学研究所革新知能統合研究センター、2.NTTコミュニケーション科学基礎研究所、3.防災科学技術研究所)

キーワード:地震動予測モデル、ニューラル・ネットワーク、サイト特性

We constructed a neural network-based ground motion prediction model estimating spectral accelerations. Instead of specifying physical quantities as site properties, we input site ID and let the network learn the site property from strong motion data. We demonstrated that this model improves the prediction performance by applying it to KiK-net data in Tohoku region of Japan. Moreover, the obtained site property indicates that, for intermediate depth earthquakes, the short-period (< ~1 sec) spectrum is mainly governed by the distance from the volcanic front. This suggests that the proposed model successfully learned not only the ground condition under the individual sites but also propagation path effects known as anomalous seismic intensity in this region.