JpGU-AGU Joint Meeting 2020

講演情報

[E] 口頭発表

セッション記号 S (固体地球科学) » S-EM 固体地球電磁気学

[S-EM19] Earth and planetary magnetism: Observations, modeling, and implications on dynamics and evolution

コンビーナ:小田 啓邦(産業技術総合研究所地質情報研究部門)、高橋 太(九州大学大学院理学研究院)、Courtney Jean Sprain(University of Florida)、臼井 洋一(海洋研究開発機構)

[SEM19-04] Anelastic torsional oscillations in Jupiter's metallic hydrogen region

*堀 久美子1,2Robert Teed3Chris Jones2 (1.神戸大学 システム情報学研究科、2.リーズ大学 応用数学科、3.グラスゴー大学 数学・統計学部)

キーワード:ガス惑星、永年変化、波

We consider torsional Alfvén waves which may be excited in Jupiter's metallic hydrogen region. These axisymmetric zonal flow fluctuations have previously been examined for incompressible fluids in the context of Earth's liquid iron core. Theoretical models of the deep-seated Jovian dynamo, implementing radial changes of density and electrical conductivity in the equilibrium model, have reproduced its strong, dipolar magnetic field. Analysing such models, we find anelastic torsional waves travelling perpendicular to the rotation axis in the metallic region on timescales of at least several years. Being excited by the more vigorous convection in the outer part of the dynamo region, they can propagate both inwards and outwards. When being reflected at a magnetic tangent cylinder at the transition to the molecular region, they can form standing waves. Identifying such reflections in observational data could determine the depth at which the metallic region effectively begins. Also, this may distinguish Jovian torsional waves from those in Earth's core, where observational evidence has suggested waves mainly travelling outwards from the rotation axis. These waves can transport angular momentum and possibly give rise to variations in Jupiter's rotation period of magnitude no greater than tens of milliseconds. In addition these internal disturbances could give rise to a 10% change over time in the zonal flows at a depth of 3000 km below the surface.