JpGU-AGU Joint Meeting 2020

講演情報

[E] ポスター発表

セッション記号 S (固体地球科学) » S-IT 地球内部科学・地球惑星テクトニクス

[S-IT26] 核ーマントルの相互作用と共進化

コンビーナ:太田 健二(東京工業大学理学院地球惑星科学系)、飯塚 毅(東京大学)、河合 研志(東京大学大学院理学系研究科地球惑星科学専攻)、土屋 卓久(愛媛大学地球深部ダイナミクス研究センター)

[SIT26-P12] Electrical conductivity measurement of water-bearing bridgmanite using an externally heated diamond anvil cell

*奥田 善之1太田 健二1西原 遊2鍵 裕之3廣瀬 敬3,4 (1.東京工業大学、2.愛媛大学、3.東京大学、4.地球生命研究所)

キーワード:下部マントル、ブリッジマナイト、水、電気伝導度

The presence of water strongly affects the structure, phase relation and physical properties of the Earth’s deep mantle minerals (Chen et al., 2020; Chang et al., 2017). Since electrical conductivity is sensitive to the water content of minerals, the electrical conductivity inferred from the analysis of electromagnetic induction brings the spatial distribution of water in the Earth’s interior. Previous studies have estimated the actual water content of the Earth’s upper mantle and the mantle transition zones by comparing the geophysically inferred electrical conductivity with the experimentally measured water content dependence of the electrical conductivity of mantle minerals (e.g., Karato, 2011). However, so far, the water content dependence of the electrical conductivity of lower mantle minerals have never been reported. Bridgmanite is the most abundant mineral in the Earth’s lower mantle. Its water solubility is yet controversial, which varies from 5~4000 ppm (Litasov et al., 2003; Murakami et al., 2002), implying that studies on water solubility of bridgmanite is not sufficient to constrain the actual water distribution in the lower mantle. Here we measured the electrical conductivity of Mg0.88Fe0.14Al0.11Si0.91O3 bridgmanite containing 500 ppm H2O at high P-T conditions using an externally heated diamond anvil cell. We used a quasi-four terminal method for electrical conductivity measurements. Water content of our sample was estimated by Fourier transform infrared spectrometer (FTIR). From our results, we will discuss the water content of the Earth’s lower mantle.

References
Chen, H. et al. Possible H2O storage in the crystal structure of CaSiO3 perovskite. Phys. Earth Planet. Inter. 299, 106412 (2020).
Chang, Y. Y. et al. Hydration-reduced lattice thermal conductivity of olivine in Earth’s upper mantle. Proc. Natl. Acad. Sci. U. S. A. 114, 4078–4081 (2017).
Karato, S. I. Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet. Sci. Lett. 301, 413–423 (2011).
Litasov, K. et al. Water solubility in Mg-perovskites and water storage capacity in the lower mantle. Earth Planet. Sci. Lett. 211, 189–203 (2003).
Murakami, M. et al. Water in Earth’s Lower Mantle. 295, 1885–1888 (2002).