JpGU-AGU Joint Meeting 2020

Presentation information

[E] Oral

S (Solid Earth Sciences ) » S-IT Science of the Earth's Interior & Techtonophysics

[S-IT30] Tectonic collision systems in continents and oceans

convener:Ling Bai(ITP Institute of Tibetan Plateau Research, Chinese Academy of Sciences), James Mori(Earthquake Hazards Division, Disaster Prevention Research Institute, Kyoto University), Xiaodong Song(University of Illinois at Urbana-Champaign), Yuzo Ishikawa(The National Institute of Advanced Industrial Science and Technology)

[SIT30-05] Subduction thermal regime, slab metamorphism and interplate earthquakes beneath Mariana based on 3-D numerical simulation

*Yingfeng Ji1 (1.Institute of Tibetan Plateau Research, Chinese Academy of Sciences)

Keywords:thermal regime, metamorphism, 3D modeling

The Marina arc system represents a typical mode of intra-oceanic convergent boundary characterizing cicum-Pacific subduction zones, together with the Izu-Bonin, Kuril and Tonga-Kermadec margins well known for the tectonically formed deep trenches. Active back-arc extension driven by hydrothermal mantle upwell comprises one of the significant features of Mariana caused by steep subduction. Previous studies document that the narrow subduction constrains the seismicity in Mariana to be less than M7. However, the subduction thermal regime remains still unclear in detail. Based on the 3-D thermal model constructed for Mariana, we found that the highly curved Mariana arc presenting such a particular tectonic setting caused by trench retreat produces a cold thermal structure beneath the central and northern Mariana influenced by an oblique subduction. The deep earthquakes (>100km) are therefore frequently detected compared with the southern Mariana. The subducted Pacific plate entraining the oceanic crust components is calculated to obtain their pressure-temperature conditions for different petrological faces undergoing multiple phase transition including the paths from amphibolite to eclogite or harzburgite at a high temperature of >500℃ which is conjectured to facilitate the deep earthquakes at Mariana. The dewatered oceanic plate is expected to releases ample fluids for the backarc volcanism and hydrous circulation at Mariana mantle wedge. The 3-D temperature structure of Mariana obtained in this study sheds lights on regional earthquake genesis and slab metamorphism in such an intro-oceanic subduction system featured by deep events.