日本地球惑星科学連合2022年大会

講演情報

[E] 口頭発表

セッション記号 A (大気水圏科学) » A-AS 大気科学・気象学・大気環境

[A-AS02] 大気の鉛直運動を基軸とした地球環境学の新展開

2022年5月22日(日) 13:45 〜 15:15 106 (幕張メッセ国際会議場)

コンビーナ:佐藤 正樹(東京大学大気海洋研究所)、コンビーナ:佐藤 薫(東京大学 大学院理学系研究科 地球惑星科学専攻)、岡本 創(九州大学)、コンビーナ:丹羽 洋介(国立環境研究所)、座長:高麗 正史(東京大学大学院理学系研究科地球惑星科学専攻大気海洋科学講座)、佐藤 薫(東京大学 大学院理学系研究科 地球惑星科学専攻)、丹羽 洋介(国立環境研究所)

14:00 〜 14:15

[AAS02-02] On the Formation of Tropopause Folds and Constituent Gradient Enhancement near Westerly Jets

★Invited Papers

*Matthew Hitchman matt@aos.wisc.edu1、Shellie M Rowe1 (1.Department of Atmospheric and Oceanic Sciences, University of Wisconsin - Madison)

キーワード:Tropopause Folds, Subpolar Jet, Extratropical Cyclones, Tracer Transport, Aircraft Observations , Vertical Motions

The role of quasi-isentropic differential advection in creating tropopause folds and strong constituent gradients near midlatitude westerly jets is investigated using the University of Wisconsin Nonhydrostatic Modeling System (UWNMS). Dynamical structures are compared with aircraft observations through a fold and subpolar jet (SPJ) during research flight 4 (RF04) of the Stratosphere–Troposphere Analyses of Regional Transport (START08) campaign. The observed distribution of water vapor and ozone during RF04 provides evidence of rapid transport in the SPJ, enhancing constituent gradients above relative to below the intrusion. The creation of a tropopause fold by quasi-isentropic differential advection on the upstream side of the trough is described. This fold was created by a southward jet streak in the SPJ, where upper tropospheric air displaced the tropopause eastward in the 6–10 km layer, thereby overlying stratospheric air in the 3–6 km layer. The subsequent superposition of the subtropical and subpolar jets is also shown to result from quasi-isentropic differential advection.
The occurrence of low values of ozone, water vapor, and potential vorticity on the equatorward side of the SPJ can be explained by convective transport of low-ozone air from the boundary layer, dehydration in the updraft, and detrainment of inertially unstable air in the outflow layer. An example of rapid juxtaposition with stratospheric air in the jet core is shown for RF01. The net effect of upstream convective events is suggested as a fundamental cause of the strong constituent gradients observed in midlatitude jets, with the aggregate divergence aloft causing upper-tropospheric air to flow over stratospheric air. Idealized diagrams illustrate the role of differential advection in creating tropopause folds and constituent gradient enhancement. The primacy of buoyancy as a causal agent for vertical motion in midlatitude cyclones is emphasized.