日本地球惑星科学連合2022年大会

講演情報

[E] ポスター発表

セッション記号 A (大気水圏科学) » A-AS 大気科学・気象学・大気環境

[A-AS02] 大気の鉛直運動を基軸とした地球環境学の新展開

2022年5月30日(月) 11:00 〜 13:00 オンラインポスターZoom会場 (6) (Ch.06)

コンビーナ:佐藤 正樹(東京大学大気海洋研究所)、コンビーナ:佐藤 薫(東京大学 大学院理学系研究科 地球惑星科学専攻)、岡本 創(九州大学)、コンビーナ:丹羽 洋介(国立環境研究所)、座長:佐藤 正樹(東京大学大気海洋研究所)、佐藤 薫(東京大学 大学院理学系研究科 地球惑星科学専攻)、岡本 創(九州大学)、丹羽 洋介(国立環境研究所)

11:00 〜 13:00

[AAS02-P04] A Comparison of Satellite and Reanalysis Wind Products with In-Situ Wave Glider and UAV Ocean Observations

*小阪 尚子1、中村 亨1、倉 恒子1、飯塚 達哉1梅宮 悠輔1、伊丹 豪1、村田 揚成2、御手洗 哲司2 (1.NTT宇宙環境エネルギー研究所、2.沖縄科学技術大学院大学)

キーワード:ウェーブグライダー、ドローン、海上風

Faster and more accurate weather forecasts are needed to mitigate the damage caused by extreme weather such as typhoons, linear rainbands, and localized torrential rains. It is considered that the prediction performance can be improved by using in-situ observation data in the ocean region closer to the extreme weather source or course. Previous studies have confirmed the effectiveness of attempts to obtain in-situ observation data to predict linear rainband and localized torrential rains and typhoons using dropsondes falling from aircraft.
Conventional studies show the differences between in-situ observed data such as Argo float or wave glider (WG) data with satellite and reanalysis data. However, in the comparison of data with different spatiotemporal resolutions, the comparison is made by resampling one side, but a two-way comparison is not made. In this study, we analyze the results of upsampling (linear interpolation) and downsampling (averaging). We evaluate the accuracy of various data with different spatiotemporal resolutions.
In this study, in-situ observation data of Sea Surface Wind speed (SSW) are acquired using Wave Glider SV2 (hereinafter WG) from Liquid Robotics Co., which has a track record of typhoon observation, and an unmanned aerial vehicle (UAV) PF-2 from Autonomous Control Systems Laboratory (ACSL) Ltd. Wind product SSW of GCOM-W1/AMSR-2 is used as satellite data, and the WRF model of PacIOOS as reanalysis data for comparison.
The accuracy of SSW at 10 meters above sea level was evaluated in a calm environment in this study. In the case of extreme weather, wind speeds higher than this observation data will be targeted. In the future, we aim to establish an extreme weather observation method for not only wind speed but also various meteorological and oceanographic data and verify the accuracy of extreme weather observation data.