日本地球惑星科学連合2022年大会

講演情報

[J] 口頭発表

セッション記号 A (大気水圏科学) » A-AS 大気科学・気象学・大気環境

[A-AS11] 大気化学

2022年5月27日(金) 10:45 〜 12:15 201A (幕張メッセ国際会議場)

コンビーナ:内田 里沙(一般財団法人 日本自動車研究所)、コンビーナ:坂本 陽介(京都大学大学院地球環境学堂)、岩本 洋子(広島大学大学院統合生命科学研究科)、コンビーナ:石戸谷 重之(産業技術総合研究所)、座長:持田 陸宏(名古屋大学宇宙地球環境研究所)、長浜 智生(名古屋大学宇宙地球環境研究所)

11:30 〜 11:45

[AAS11-09] Characteristics of the Digital Filter Method for the Analyses of Long-term Variations of Stratospheric Ozone and Other Species with AURA/MLS Satellite Data

*楊 天量1,2長浜 智生2中島 拓1,2 (1.名古屋大学大学院工学研究科電気工学専攻、2.名古屋大学宇宙地球環境研究所)

キーワード:オゾン、デジタルフィルター、QBO、長期トレンド

Research on the long-term trend of stratospheric ozone has been highly attractive since the discovery of huge loss of ozone over Antarctica in 1985 [1].Abundant observational and simulation studies agree on the point that the stratospheric ozone begins to recover with turnover between 1997 and 2000 [2]. As for the ozone trend, various results from linear regression analysis, named multi-linear regression (MLR) analysis, on multiple natural indices independent of each other, are consistent with differences within 5%. However, the mechanisms by which these indices of the natural variability affect the long-term variation of ozone are not yet fully understood. We designed a new method, Digital Filter (DF), to extract out the long-term component of stratospheric ozone variation. The new DF is based on the DF methods of other meteorological models, such as the CO2 concentration [3] and tropospheric ozone [4]. The DF output patterns of stratospheric equatorial ozone data from AURA/MLS satellite were found to be consistent with previous results of the QBO patterns [5]. The QBO-like signal of polar ozone from the DF method shows consistent results for both hemispheres after 2018, whereas there are irregular time variability and hemispheric asymmetry in the earlier periods. In this presentation, we show the scheme of the DF method we used and report its long-term output of variations in ozone and other minor constituents.

References
1. Farman J., Gardiner B. & Shanklin J. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315, 207–210 (1985). doi:10.1038/315207a0
2. Petropavlovskikh I., Godin-Beekmann S., Hubert D., Damadeo R., Hassler B., Sofieva V. (Eds.) SPARC/IO3C/GAW Report on Long-term Ozone Trends and Uncertainties in the Stratosphere. , SPARC Report No. 9, GAW Report No. 241, WCRP-17/2018, doi: 10.17874/f899e57a20b
3. Nakazawa T., Ishizawa M., Higuchi K. and Trivett N.B.A. (1997), Two Curve Fitting Methods Applied to CO2 Flask Data Environmetrics, 8: 197-218, https://doi.org/10.1002/(SICI)1099-095X(199705)8:3<197::AID-ENV248>3.0.CO;2-C
4. Rao S.T. & Zurbenko Igot G. (1994) Detecting and Tracking Changes in Ozone Air Quality, Air & Waste, 44:9, 1089-1092, doi: 10.1080/10473289.1994.10467303
5. Baldwin M. P., et al. (2001), The quasi-biennial oscillation, Rev. Geophys., 39( 2), 179– 229, doi: 10.1029/1999RG000073